希尔伯特的有穷数学  被引量:2

Hilbert's Finite Mathematics

在线阅读下载全文

作  者:康孝军[1] KANG Xiaojun(School of Philosophy and Sociology, Jilin University, Changchun, Jilin, 130012)

机构地区:[1]吉林大学哲学社会学院,吉林长春130012

出  处:《自然辩证法通讯》2018年第6期44-49,共6页Journal of Dialectics of Nature

基  金:国家社会科学基金青年项目"反推数学的哲学基础研究"(项目编号:15CZX045)

摘  要:希尔伯特为了一劳永逸地解决数学基础问题,提出了著名的希尔伯特纲领。该纲领旨在把数学归约到毋庸置疑的有穷数学。遗憾的是,希尔伯特本人并未对有穷数学给出具体形式化。在简介希尔伯特有穷数学的基本思想后,梳理了各种不同的形式化系统:初始递归算术(PRA)、ZFC的有穷数学系统(Fin(ZFC))和基本算术(EA),并对PRA是希尔伯特的有穷数学进行辩护和简要述评。To solve the problem of the foundation of mathematics once and for all, Hilbert has put forward the famous Hilbert's program. The program aims to reduce mathematics to indubitable finite mathematics. Unfortunately, Hilbert himself did not give a specific formal definition of finite mathematics. In this paper, an introduction to the basic idea of Hilbert's finite mathematics is given and various formal systems of Hilbert's finite mathematics are sorted out: Primitive Recursive Arithmetic(PRA), finite mathematics of ZFC(Fin(ZFC)) and Elementary Arithmetic(EA). After defending that PRA is the best formal system of Hilbert's finite mathematics, brief comments are presented on PRA.

关 键 词:希尔伯特 有穷数学 初始递归算术 

分 类 号:B813[哲学宗教—逻辑学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象