高速铁路路基过渡段沉降预测研究及方法优化  被引量:3

Settlement prediction research and method optimizing of transition section in high speed railway

在线阅读下载全文

作  者:于宝兴 李仲勤 YU Baoxing;LI Zhongqin(College of Civil Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China;School of Geomaties, Lanzhou Jiaotong University, Lanzhou 730070, China)

机构地区:[1]兰州交通大学土木工程学院,甘肃兰州730070 [2]兰州交通大学测绘与地理信息学院,甘肃兰州730070

出  处:《测绘工程》2018年第5期72-76,80,共6页Engineering of Surveying and Mapping

摘  要:利用现场监测数据对双曲线法、三点法、指数曲线法和Asaoka法等常规曲线拟合方法进行不同时间计算单位的拟合分析,综合考虑相关系数、误差平方和以及最终沉降量等,研究每种方法的适用性。将其中的Asaoka法、三点法、指数法结合二次自适应最小二乘迭代思想进行优化改进。研究表明:在高速铁路路隧和路桥过渡段沉降预测分析中几种方法都具有较好的适用性;优化改进后的方法相关系数高,预测误差小,最终沉降量预测值波动小;无论短期监测数据还是长期监测数据,以月为周期进行预测分析优于按天预测的结果。There are still few researches on road tunnel and analysis of the post construction settlement of transition section between subgrade and tunnel and between subgrade and bridge by curve fitting method.The conventional curve hyperbola method,three points method,exponent curve method,Asaoka method etc are fitting analysis by field monitoring data in different times.In order to study the applicability of each method,the correlative coefficient,the sum of squared error and the final settlement are considered comprehensively.The Asaoka method,the three points method and the exponent curve method are optimized and improved combining with two order adaptive least square iteration,applicability and reliability.The research result shows that the four methods have better applicability in settlement of transition section between subgrade and tunnel and between subgrade and bridge of high speed railway;the optimized methods have higher correlation coefficient,less prediction error and less fluctuation of final settlement prediction;regardless of short-term monitoring data or long-term monitoring data,monthly cycle prediction analysis is better than the daily forecast results.

关 键 词:过渡段 曲线拟合法 沉降预测 优化 

分 类 号:TU196[建筑科学—建筑理论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象