交换环的w-弱finitistic维数的注记  被引量:3

Note on the w-weak finitistic dimension of a commutative ring

在线阅读下载全文

作  者:李庆[1] LI Qing(School of Computer Science and Technology, Southwest Minzu University, Chengdu 610041, P. R. C.)

机构地区:[1]西南民族大学计算机科学与技术学院,四川成都610041

出  处:《西南民族大学学报(自然科学版)》2018年第3期311-314,共4页Journal of Southwest Minzu University(Natural Science Edition)

基  金:国家自然科学基金(11401493);四川省教育厅自然科学基金(14ZB0463);中央高校基本科研业务费专项资金(2015NZYQN69)

摘  要:设R是交换环,M是R-模.引入了模M的w-投射维数w-pd_R(M)和环R的w-弱finitistic维数w-f PD(R).给出w-f PD(R)=0的充分必要条件.证明了若R是w-凝聚环,M是有限表现R-模,则M有w-投射分解…→P_n→P_(n-1)→…→P_1→P_0→M→0,其中P_i是有限型的w-投射模,这里i=0,1,….最后,证明了若R是w-半遗传环,w-f PD(R)#1.Let R be a commutative ring and M be an R -module. This paper introduces and studies the w -projective dimension w -pdR (M) of an R -module M and the w -weak finitistic dimension w - fPD (R) of R. The sufficient and necessary condition of w - fPD (R) = 0 is given. As an application, it is shown that if R is a w -coherent ring, M is of finitely presented type, then M has a w -projective resolution ... →Pn →Pn-1→P1→P0→ M→0 , where Pi is w -projective of finite type for i = 0,1 ,.... Finally, if R is w -semi-hereditary, then w - fPD (R)≤1.

关 键 词:w-投射模 w-投射维数 w-弱finitistic维数 w-凝聚环 w-半遗传环 

分 类 号:O153.3[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象