On Weighted L^p-Approximation by Weighted Bernstein-Durrmeyer Operators  被引量:2

On Weighted L^p-Approximation by Weighted Bernstein-Durrmeyer Operators

在线阅读下载全文

作  者:Meiling Wang Dansheng Yu Dejun Zhao 

机构地区:[1]Department of Mathematics,Hangzhou Normal University [2]College of Fundamental Studies,Shanghai University of Engineering Science

出  处:《Analysis in Theory and Applications》2018年第1期1-16,共16页分析理论与应用(英文刊)

摘  要:In the present paper, we establish direct and converse theorems for weight-ed Bernstein-Durrmeyer operators under weighted L^p-norm with Jacobi weight w(x)=x^a(1-x)β.All the results involved have no restriction a,β〈1-1/p,which indicates that the weighted Bemstein-Durrmeyer operators have some better approxi- mation properties than the usual Bernstein-Durrmeyer operators.In the present paper, we establish direct and converse theorems for weight-ed Bernstein-Durrmeyer operators under weighted L^p-norm with Jacobi weight w(x)=x^a(1-x)β.All the results involved have no restriction a,β〈1-1/p,which indicates that the weighted Bemstein-Durrmeyer operators have some better approxi- mation properties than the usual Bernstein-Durrmeyer operators.

关 键 词:Weighted Lp-approximation weighted Bernstein-Durrmeyer operators direct andconverse theorems. 

分 类 号:O174.41[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象