检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:TANG Ganyi LU Guifu 唐肝翌;卢桂馥(School of Computer and Information, Anhui Polytechnic University)
机构地区:School of Computer and Information, Anhui Polytechnic University, Wuhu 241000, Anhui, China
出 处:《Journal of Shanghai Jiaotong university(Science)》2018年第3期398-403,共6页上海交通大学学报(英文版)
基 金:the National Natural Science Foundation of China(No.61572033);the Natural Science Foundation of Education Department of Anhui Province of China(No.KJ2015ZD08);the Higher Education Promotion Plan of Anhui Province of China(No.TSKJ2015B14)
摘 要:Block principle and pattern classification component analysis (BPCA) is a recently developed technique in computer vision In this paper, we propose a robust and sparse BPCA with Lp-norm, referred to as BPCALp-S, which inherits the robustness of BPCA-L1 due to the employment of adjustable Lp-norm. In order to perform a sparse modelling, the elastic net is integrated into the objective function. An iterative algorithm which extracts feature vectors one by one greedily is elaborately designed. The monotonicity of the proposed iterative procedure is theoretically guaranteed. Experiments of image classification and reconstruction on several benchmark sets show the effectiveness of the proposed approach.Block principle component analysis(BPCA) is a recently developed technique in computer vision and pattern classification. In this paper, we propose a robust and sparse BPCA with Lp-norm, referred to as BPCALp-S, which inherits the robustness of BPCA-L1 due to the employment of adjustable Lp-norm. In order to perform a sparse modelling, the elastic net is integrated into the objective function. An iterative algorithm which extracts feature vectors one by one greedily is elaborately designed. The monotonicity of the proposed iterative procedure is theoretically guaranteed. Experiments of image classification and reconstruction on several benchmark sets show the effectiveness of the proposed approach.
关 键 词:block principle component analysis(BPCA) LP-NORM robust modelling sparse modelling
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7