The impact of geological uncertainty on primary production from a fluvial reservoir  被引量:3

The impact of geological uncertainty on primary production from a fluvial reservoir

在线阅读下载全文

作  者:Mohammad Koneshloo Saman A.Aryana Xiaoni Hu 

机构地区:[1]Department of Petroleum Engineering,University of Wyoming,Laramie,WY 87061,USA [2]Department of Chemical Engineering,University of Wyoming,Laramie,WY 87061,USA [3]Department of Geological Sciences,University of Wyoming,Laramie,WY 87061,USA

出  处:《Petroleum Science》2018年第2期270-288,共19页石油科学(英文版)

摘  要:Deposition of fluvial sandbodies is controlled mainly by characteristics of the system, such as the rate of avulsion and aggradation of the fluvial channels and their geometry. The impact and the interaction of these parameters have not received adequate attention. In this paper, the impact of geological uncertainty resulting from the interpretation of the fluvial geometry, maximum depth of channels, and their avulsion rates on primary production is studied for fluvial reservoirs. Several meandering reservoirs were generated using a process-mimicking package by varying several con- trolling factors. Simulation results indicate that geometrical parameters of the fluvial channels impact cumulative pro- duction during primary production more significantly than their avulsion rate. The most significant factor appears to be the maximum depth of fluvial channels. The overall net-to-gross ratio is closely correlated with the cumulative oil production of the field, but cumulative production values for individual wells do not appear to be correlated with the local net-to-gross ratio calculated in the vicinity of each well. Connectedness of the sandbodies to each well, defined based on the minimum time-of-flight from each block to the well, appears to be a more reliable indicator of well-scale production.Deposition of fluvial sandbodies is controlled mainly by characteristics of the system, such as the rate of avulsion and aggradation of the fluvial channels and their geometry. The impact and the interaction of these parameters have not received adequate attention. In this paper, the impact of geological uncertainty resulting from the interpretation of the fluvial geometry, maximum depth of channels, and their avulsion rates on primary production is studied for fluvial reservoirs. Several meandering reservoirs were generated using a process-mimicking package by varying several con- trolling factors. Simulation results indicate that geometrical parameters of the fluvial channels impact cumulative pro- duction during primary production more significantly than their avulsion rate. The most significant factor appears to be the maximum depth of fluvial channels. The overall net-to-gross ratio is closely correlated with the cumulative oil production of the field, but cumulative production values for individual wells do not appear to be correlated with the local net-to-gross ratio calculated in the vicinity of each well. Connectedness of the sandbodies to each well, defined based on the minimum time-of-flight from each block to the well, appears to be a more reliable indicator of well-scale production.

关 键 词:Geological uncertainty evaluation Fluvial reservoir modeling Process-mimicking simulation Geometry of fluvial channels 

分 类 号:P618.13[天文地球—矿床学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象