Formation of Epitaxial Heavy-doped Silicon Films by PECVD Method  

Formation of Epitaxial Heavy-doped Silicon Films by PECVD Method

在线阅读下载全文

作  者:黄海宾 YUE Zhihao HE Yuping YUAN Jiren ZENG Xiaoxing ZHOU Naigen 周浪 

机构地区:[1]Institute of Photovoltaics, Nanchang University

出  处:《Journal of Wuhan University of Technology(Materials Science)》2018年第3期585-588,共4页武汉理工大学学报(材料科学英文版)

基  金:Funded by the National Natural Science Foundation of China(Nos.61741404,61464007,51561022);the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20113601120006);the Science and Technology Project of Education Department of Jiangxi Province,China(No.GJJ13010)

摘  要:Plasma-enhanced CVD(PECVD) epitaxy at 200℃ was used to deposit heavy doped n-type silicon films. Post-annealing by rapid thermal processing was applied to improve the properties of the epitaxial layer. By analyzing the Raman spectra and the imaginary part of the dielectric constant spectra of the samples, it was found that high-quality heavy-doped epitaxial n-type silicon layer can be obtained by optimizing the parameters of the PECVD depositing process. Reducing the electrodes distance of the PECVD had a great effect on the crystallzation of the epitaxialed n-type silicon films. Sillicon films with high-crystallization were obtained with the electrodes distance of 18 mm. Post-annealing process can improve the crystallization and reduce the resistance of the epitaxial films. In our research, it was found that the sheet resistance(R□) of the post-annealed films with thickness of about 50 nm has a simple relationship with RPH3/SiH4(ratio of the flow rate of PH3 and SiH4) of the PECVD processing: R□=-184-125 lg(R(PH3/SiH4)). In the end, high-quality epitaxial n-type silicon film was obtained with R□ of 15 Ω/□ and thickness of ~50 nm.Plasma-enhanced CVD(PECVD) epitaxy at 200℃ was used to deposit heavy doped n-type silicon films. Post-annealing by rapid thermal processing was applied to improve the properties of the epitaxial layer. By analyzing the Raman spectra and the imaginary part of the dielectric constant spectra of the samples, it was found that high-quality heavy-doped epitaxial n-type silicon layer can be obtained by optimizing the parameters of the PECVD depositing process. Reducing the electrodes distance of the PECVD had a great effect on the crystallzation of the epitaxialed n-type silicon films. Sillicon films with high-crystallization were obtained with the electrodes distance of 18 mm. Post-annealing process can improve the crystallization and reduce the resistance of the epitaxial films. In our research, it was found that the sheet resistance(R□) of the post-annealed films with thickness of about 50 nm has a simple relationship with RPH3/SiH4(ratio of the flow rate of PH3 and SiH4) of the PECVD processing: R□=-184-125 lg(R(PH3/SiH4)). In the end, high-quality epitaxial n-type silicon film was obtained with R□ of 15 Ω/□ and thickness of ~50 nm.

关 键 词:heavy-doped n-type silicon epitaxial deposition PECVD 

分 类 号:TB383.2[一般工业技术—材料科学与工程] TQ127.2[化学工程—无机化工]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象