检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨可 JIANG Yongfeng BAO Yefeng
机构地区:[1]College of Mechanical and Electrical Engineering, Hohai University
出 处:《Journal of Wuhan University of Technology(Materials Science)》2018年第3期669-673,共5页武汉理工大学学报(材料科学英文版)
基 金:Funded by the National Natural Science Foundation of China(No.51101050);Fundamental Research Funds for the Central Universities,Natural Science Foundation of Jiangsu Province of China(No.BK20141156);Program for Outstanding Innovative Talents in Hohai University
摘 要:The hardfacing alloys with different concentrations of titanium were deposited on carbon steel substrates by shielded metal arc welding, and the effect of titanium content on the microstructure characteristics of the hardfacing alloys was investigated. The wear resistance test of the hardfacing alloys was carried out by using a slurry rubber wheel abrasion test machine, and the wear behaviour was also studied. The results indicate that the addition of titanium can effectively promote the precipitation of the complex carbides of Nb and Ti due to the prior precipitation of titanium carbide which acts as nucleation sites for complex carbides. With the increase of titanium content, the wear resistance of the hardfacing alloys is increased gradually resulting from the refinement of microstructure and dispersive distribution of fine carbide precipitates. And the wear mechanism is mainly minimum plastic deformation with interrupted grooves due to the strengthening and protecting effects of carbide precipitates.The hardfacing alloys with different concentrations of titanium were deposited on carbon steel substrates by shielded metal arc welding, and the effect of titanium content on the microstructure characteristics of the hardfacing alloys was investigated. The wear resistance test of the hardfacing alloys was carried out by using a slurry rubber wheel abrasion test machine, and the wear behaviour was also studied. The results indicate that the addition of titanium can effectively promote the precipitation of the complex carbides of Nb and Ti due to the prior precipitation of titanium carbide which acts as nucleation sites for complex carbides. With the increase of titanium content, the wear resistance of the hardfacing alloys is increased gradually resulting from the refinement of microstructure and dispersive distribution of fine carbide precipitates. And the wear mechanism is mainly minimum plastic deformation with interrupted grooves due to the strengthening and protecting effects of carbide precipitates.
关 键 词:hardfacing alloy carbides titanium microstructure wear resistance
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.200