检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:读习习 刘华锋 景丽萍[1] DU Xixi;LIU Huafeng;JING Liping(Beijing Key Lab of Traffic Data Analysis and Mining, Beijing Jiaotong University, Beijing 100044, China)
机构地区:[1]北京交通大学交通数据分析与挖掘北京市重点实验室,北京100044
出 处:《山东大学学报(工学版)》2018年第3期96-102,共7页Journal of Shandong University(Engineering Science)
基 金:国家自然科学基金资助项目(61370129;61375062;61632004);长江学者和创新团队发展计划资助项目(IRT201206)
摘 要:为解决用户冷启动问题并提高推荐算法的评分预测精度,提出一种融合社交网络的叠加联合聚类推荐模型(SN-ACCRec),将用户社交关系融合到对评分矩阵的用户聚类中。根据社交关系理论分析用户社交关系,采用模糊C均值聚类的思想划分用户块,并利用k均值算法对评分矩阵的产品聚类,得到一次联合聚类结果。通过迭代方式获取用户和产品多层联合聚类结果,不断叠加多层聚类结果来近似评分矩阵,预期先后得到用户和产品的泛化和细化类别,实现对评分矩阵中缺失值的预测。采用十重交叉验证法对模型评估,试验结果表明,该模型有效降低了推荐中的平均绝对误差(mean absolute error,M AE)和均方根误差(root mean square error,RM SE),同时在冷启动用户上也表现出了较好地推荐性能。In order to solve the problem of user cold start problem and improve the prediction accuracy of recommendation algorithm,an additive co-clustering recommendation model combining social networks( SN-ACCRec) was proposed,which integrated user social relations into user clustering of rating matrix. According to the social relations theory analysis of users,user blocks was divided with the idea of fuzzy C means clustering,and a co-clustering result was acquired by clusters items on rating matrix according to k-means algorithm. The general and specific categories was gotten by generating the user and item additive co-clustering results in an iterative method and pedict the missing values. The model was evaluated using ten fold cross validation method,and experimental results showed that this model could reduce the average absolute error( MAE) and the root mean square error( RMSE),which also showed a better recommendation performance in the cold start users.
分 类 号:TP311[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222