基于微磁检测技术的钢杆淬硬层深度定量预测  被引量:9

Quantitative Prediction of Induction Hardened Case Depth in Steel Rods Based on Micro-magnetic Testing Technique

在线阅读下载全文

作  者:吴斌[1] 王学迁[1] 刘秀成[1] 张瑞环 邢鹏飞 何存富[1] WU Bin, WANG Xueqian, LIU Xiucheng, ZHANG Ruihuan, XING Pengfei, HE Cunfu(College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology, Beijing 100124, Chin)

机构地区:[1]北京工业大学机械工程与应用电子技术学院,北京100124

出  处:《北京工业大学学报》2018年第5期687-692,共6页Journal of Beijing University of Technology

基  金:国家自然科学基金资助项目(11402008;11527801);北京市自然科学基金资助项目(3154030);中国博士后科学基金资助项目(2014M560029)

摘  要:为将微磁检测原理应用于钢杆淬硬层深度的定量检测,设计了可同步检测切向磁场强度时变信号、磁滞回线和巴克豪森噪声信号的多功能传感器,从3类微磁信号中提取出共8项特征参数用于淬硬层深度表征.基于逐步回归方法,筛选出显著水平小于0.07的4项微磁特征参数(即矫顽力Hc、切向磁场强度时变信号的3次谐波幅值A3和谐波畸变因子K、巴克豪森噪声信号蝶形曲线的参数H_(cm)),建立了四元线性回归预测模型.该模型对淬硬层深度的预测平均误差仅为3.87%.上述基于多功能传感器的微磁检测方法,可以推广应用于铁磁性杆类构件表面硬化层深度的定量检测.To apply the micro-magnetic testing method to the induction hardened case depth evaluation,an integrated sensor was designed to synchronously detect the tangential magnetic field strength signal,the hysteresis curves and the Barkhausen noise. A total of eight features or parameters were extracted from the above mentioned three kinds of signals for induction hardened case depth characterization in steel rods. Stepwise regression method was employed to help select the parameters with a significant level lower than 0. 07. Finally,the coercive force Hc,the amplitude of the three harmonics( A3),the distortion factor( K) of tangential magnetic field strength signal,and the parameter Hcmof the butterfly-like Barkhausen noise envelop were selected as the input of a multivariable linear regression model. The established linear regression model had an averaged prediction error of 3. 87%. The developed experimental set-up together with the signal analysis method is expected to be applied to quantitative measurement of the induction hardened case depth in rod-like ferromagnetic components.

关 键 词:淬硬层深度 微磁检测 多元线性回归 预测模型 

分 类 号:TH878[机械工程—仪器科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象