基于改进FastICA的局部放电在线监测窄带干扰高保真性抑制方法  被引量:19

Periodic Narrowband Noise Rejection with High Fidelity of Partial Discharge on Line Monitoring Based on Improved FastICA Algorithm

在线阅读下载全文

作  者:周凯[1] 谢敏[1] 赵世林[1] 何珉[1] 张福忠[1] Zhou Kai;Xie Min;Zhao Shilin;He Min;Zhang Fuzhong(School of Electrical Engineering and Information Sichuan University Chengdu 610065 China)

机构地区:[1]四川大学电气信息学院,成都610065

出  处:《电工技术学报》2018年第11期2604-2612,共9页Transactions of China Electrotechnical Society

基  金:中国博士后科学基金资助项目(2015T80976)

摘  要:为了解决传统阈值法和盲分离法在局部放电周期性窄带干扰抑制过程中存在的波形畸变与不确定性问题,提出利用改进的Fast ICA算法对局部放电(PD)信号进行窄带干扰抑制。首先结合PD混合信号离散傅里叶变换功率谱的特点,引入信息熵理论对窄带干扰个数进行确定,并提出利用功率谱"两步法"对窄带干扰频率进行精确估计;然后引入简化的Simpson-Newton迭代公式对Fast ICA算法进行改进,减少算法的迭代次数,并提出利用校准信号对分离信号进行校准,修正分离PD信号的幅值和相位。仿真及实测结果表明,该方法能够有效抑制周期性窄带干扰并能有效保留信号原始特征,且算法的时间复杂度较小,同时与频率切片小波去噪方法和傅里叶变换滤波相比,该方法去噪效果更明显,且能有效避免边缘效应的影响。To solve the waveform distortions and uncertainties of traditional threshold methods and blind separation methods for periodic narrowband noise rejection of partial discharges(PD), this paper presents a noise rejection method based on improved Fast ICA algorithm. Firstly, in this paper, the number of periodic narrowband noise is determined by information entropy theory combined with mixed partial discharge DFT power spectrum, and the power spectrum "two steps" method is proposed to estimate the interference frequency accurately. Then the simplified SimpsonNewton iteration method and calibration signal are introduced to improve the Fast ICA algorithm, which can reduce iterations and modify the separated PD signal effectively. The simulation and experiment results show that: the proposed method can reject periodic narrowband noise and keep the original features of partial discharges effectively with low time complexity. Compared with frequency slice wavelet and FFT denoising method, the denoised PD signals using the method of this paper are better without edge effect.

关 键 词:局部放电 窄带干扰 改进FastICA 信息熵 校准信号 

分 类 号:TM835[电气工程—高电压与绝缘技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象