机构地区:[1]Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences,Shanghai 201800, China [2]University of Chinese Academy of Sciences, Beijing 100049, China [3]State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China [4]School of Electronic Science & Applied Physics, Hefei University of Technology, Hefei 230009, China
出 处:《Photonics Research》2018年第6期601-608,共8页光子学研究(英文版)
基 金:National Natural Science Foundation of China(NSFC)(61475171,11374084,61705244,61307056);Natural Science Foundation of Shanghai(17ZR1433900,17ZR1434200)
摘 要:High flatness, wide bandwidth, and high-coherence properties of supercontinuum(SC) generation in fibers are crucial in many applications. It is challenging to achieve SC spectra in a combination of the properties, since special dispersion profiles are required, especially when pump pulses with duration over 100 fs are employed. We propose an all-solid microstructured fiber composed only of hexagonal glass elements. The optimized fiber possesses an ultraflat all-normal dispersion profile, covering a wide wavelength interval of approximately 1.55 μm. An SC spectrum spanning from approximately 1030 to 2030 nm(corresponding to nearly one octave) with flatness<3 dB is numerically generated in the fiber with 200 fs pump pulses at 1.55 μm. The results indicate that the broadband ultraflat SC sources can be all-fiber and miniaturized due to commercially achievable 200-fs fiber lasers. Moreover, the SC pulses feature high coherence and a single pulse in the time domain, which can be compressed to 13.9-fs pulses with high quality even for simple linear chirp compensation. The Fourier-limited pulse duration of the spectrum is 3.19 fs, corresponding to only 0.62 optical cycles.High flatness, wide bandwidth, and high-coherence properties of supercontinuum (SC) generation in fibers are crucial in many applications. It is challenging to achieve SC spectra in a combination of the properties, since special dispersion profiles are required, especially when pump pulses with duration over 100 fs are employed. We propose an all-solid microstructured fiber composed only of hexagonal glass elements. The optimized fiber possesses an ultraflat all-normal dispersion profile, covering a wide wavelength interval of approximately 1.55 μm. An SC spectrum spanning from approximately 1030 to 2030 nm (corresponding to nearly one octave) with flatness 〈3 dB is numerically generated in the fiber with 200 fs pump pulses at 1.55 μm. The results indicate that the broadband ultraflat SC sources can be all-fiber and miniaturized due to commercially achievable 200-fs fiber lasers. Moreover, the SC pulses feature high coherence and a single pulse in the time domain, which can be compressed to 13.9-fs pulses with high quality even for simple linear chirp compensation. The Fourier-limited pulse duration of the spectrum is 3.19 fs, corresponding to only 0.62 optical cycles.
关 键 词:Fiber design and fabrication Photonic crystal fibers Nonlinear optics fibers Pulse compression Femtosecond phenomena Supercontinuum generation
分 类 号:TN1[电子电信—物理电子学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...