检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Chong Bai Fengshi Cai Lingchang Wang Shengqi Guo Xizheng Liu Zhihao Yuan
机构地区:[1]School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China [2]School of Materials Science and Engineering, Tianjin Key Lab for Photoelectric Materials & Devices, Tianjin University of Technology, Tianjin 300384, China
出 处:《Nano Research》2018年第7期3548-3554,共7页纳米研究(英文版)
基 金:This work was financially supported by the National Natural Science Foundation of China (Nos. 21171128 and 21603162), Tianjin Sci. & Tech. Program (No. 17JCYBJC21500), and the Fundamental Research Funds of Tianjin University of Technology.
摘 要:Rechargeable metal-iodine batteries are an emerging attractive electrochemical energy storage technology that combines metallic anodes with halogen cathodes. Such batteries using aqueous electrolytes represent a viable solution for the safety and cost issues associated with organic electrolytes. A hybrid-electrolyte battery architecture has been adopted in a lithium-iodine battery using a solid ceramic membrane that protects the metallic anode from contacting the aqueous electrolyte. Here we demonstrate an eco-friendly, low-cost zinc-iodine battery with an aqueous electrolyte, wherein active I2 is confined in a nanoporous carbon cloth substrate. The electrochemical reaction is confined in the nanopores as a single conversion reaction, thus avoiding the production of I3- intermediates. The cathode architecture fully utilizes the active I2, showing a capacity of 255 mAh·g^-1 and low capacity cycling fading. The battery provides an energy density of -151 Wh·kg^-1 and exhibits an ultrastable cycle life of more than 1,500 cycles.Rechargeable metal-iodine batteries are an emerging attractive electrochemical energy storage technology that combines metallic anodes with halogen cathodes. Such batteries using aqueous electrolytes represent a viable solution for the safety and cost issues associated with organic electrolytes. A hybrid-electrolyte battery architecture has been adopted in a lithium-iodine battery using a solid ceramic membrane that protects the metallic anode from contacting the aqueous electrolyte. Here we demonstrate an eco-friendly, low-cost zinc-iodine battery with an aqueous electrolyte, wherein active I2 is confined in a nanoporous carbon cloth substrate. The electrochemical reaction is confined in the nanopores as a single conversion reaction, thus avoiding the production of I3- intermediates. The cathode architecture fully utilizes the active I2, showing a capacity of 255 mAh·g^-1 and low capacity cycling fading. The battery provides an energy density of -151 Wh·kg^-1 and exhibits an ultrastable cycle life of more than 1,500 cycles.
关 键 词:aqueous battery nanoporous carbon IODINE ZINC cycle life
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28