检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:郑运鸿[1] 肖松 游一民 马宗雄 黄世禄 ZHENG Yunhong;XIAO Song;YOU Yimin;MA Zongxiong;HUANG Shilu(Xiamen University of Technology, Fujian Xiamen 361024, China;Xiamen Huadian Switchgear Co., Ltd., Fujian Xiamen 361006, China)
机构地区:[1]厦门理工学院,福建厦门361024 [2]厦门华电开关有限公司,福建厦门361006
出 处:《高压电器》2018年第7期157-164,共8页High Voltage Apparatus
摘 要:局部放电是造成电气设备绝缘故障的重要原因之一,长时间地发生局部放电会降低设备的绝缘性能,考虑到电气设备局部放电的产生与设备绝缘介质的电场分布密切相关。为此针对12kV环网柜的一个部件——熔丝筒,在产品测试过程中易发生局部放电的问题,采用Ansys软件对熔丝筒原模型进行了静电场仿真分析,提取出电场较大且分布极不均匀的问题区域——端盖右侧到金属侧板之间的环氧树脂壳体表面空气区域,该区域极有可能发生局部放电。然后利用静电场理论,在尽可能对熔丝筒环氧树脂壳体改动小的前提下,提出了对问题区域附近环氧壳体表面局部喷锌接地到局部喷锌接地加凸台的优化。通过静电场仿真得出优化前后问题区域的最大电场强度由26.9kV/mm先降到14kV/mm最终降到2.7kV/mm,理论上验证了最终的环氧壳体局部喷锌接地加凸台方案的正确性。最后,对不同方案的熔丝筒样品进行了局部放电检测,结果表明,熔丝筒实际发生局部放电故障的区域与静电场仿真的问题区域相吻合,验证了利用静电场仿真分析局部放电问题的合理性;同时最终优化后的熔丝筒的局部放电量达到有关标准的要求,优化方案的可行性也在工程实践中得到了验证。Partial discharge is an important cause of insulation failure of electrical equipment. A long time partial discharge will reduce the insulation performance of the equipment. Considering the occurrence of the electrical equipment' s partial discharge fault is closely related to the electric field distribution of the dielectric. In order to solve the problem that partial discharge is easy to occur during the test process of the parts of the 12 kV ring network cabinet, the Ansys software is used to simulate the electrostatic field of the original model of the fuse tube, and the problem area of the large and uneven distribution of the electric field -the epoxy resin shell between the right side of the end cover and the metal side plate is extracted. Partial discharge is very likely in this area. By using the theory of electrostatic field, the optimization of local spraying of zinc from the surface of the epoxy shell to a local zinc grounding and convex platform is proposed on the premise of small changes in the shell of epoxy resin in the fuse cartridge. Through the simulation of the electrostatic field, the maximum electric field intensity of the problem area before and after the optimization is reduced from 26.9 kV/mm to 14 kV/mm and finally to 2.7 kV/mm. The correctness of the fi- nal local spray zinc grounding and convex platform scheme is theoretically verified. Finally, the partial discharge test of the fuse tube samples of different schemes is carried out. The results show that the area of the actual partial dis- charge fault in the fuse tube is consistent with the problem area of the simulation of the electrostatic field, and the rationality of the simulation analysis of the partial discharge using the electrostatic field is verified, and the partial discharge of the fuse tube after the optimization is finally optimized. The feasibility of the optimized scheme has also been verified in engineering practice.
分 类 号:TM855[电气工程—高电压与绝缘技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.188.250.166