检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:白博[1] 李益华[1] 苏盛[1] 刘佳妮 BAI Bo;LI Yi-hua;SU Sheng;LIU Jia-ni(Changsha University of Science ~ Technology ,Changsha 410004,China)
机构地区:[1]长沙理工大学,长沙410004
出 处:《电力学报》2018年第3期183-189,共7页Journal of Electric Power
基 金:国家自然科学基金项目(51777015)
摘 要:台风风况时,风速变化率大,风力发电机出力受限,除需要考虑提高风速的预测精度之外,还应着重考虑再切入控制方案的设置问题。而台风时风速采样数据稀少,传统利用周期性、相似性进行预测的效果并不理想和瞬时风速在切出风速上下波动时,单独采用风速死区的方法失效,严重影响风机安全性和可靠性。因此,提出一种基于递归神经网络LSTM的风速区间预测方法,通过深度神经网络对采样风速进行超短期预测,并把预测结果的置信水平,作为风速预测区间的上下限,进而实现风速的区间预测。结合实例证明提出的方法有效地降低了风力发电机的切出次数,提升了风机安全性和可靠性。Because during typhoon the speed of wind is a high rate of change and the output of wind turbines is limited,not only should researchers consider the accuracy of wind speed prediction,but also focus on setting up the control scheme again.However,sampling data of wind speed are scarce during typhoon,and the effect of traditional periodic and similarity prediction is not ideal.In addition,wind speed fluctuates around the cutting wind speed instantaneously,so that only employing dead zone is invalid,which seriously affects the safety and reliability of fans.A prediction of wind speed interval based on LSTM is proposed in this paper.Using the deepen neural network predicts the wind speed in super short time,and take the confidence level of prediction results as the Upper and lower limits.Combined with practical examples,it is proved that the proposed method can effectively reduce the number of cutting times of wind turbines,and also improve the availability and reliability of wind turbines.
关 键 词:风力发电机 LSTM区间预测 深度学习 置信区间 再切入控制
分 类 号:TM614[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28