检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘亚杰 胡邦辉 王学忠 王举 黄泓 LIU Yajie;HU Banghui;WANG Xuezhong;WANG Ju;HUANG Hong(College of Meteorology and Oceanography,National University of Denfense Technology,Nanjing 211101,China)
出 处:《气象科学》2018年第3期370-377,共8页Journal of the Meteorological Sciences
基 金:国家自然科学基金资助项目(41475070;41375049)
摘 要:提出了一种新的雷暴预报法,即二进制粒子群-朴素贝叶斯分类器(Binary Particle Swarm Optimization-Naive Bayesian Classifiers,BPSO-NBayes)方法,以福州、连城、宁波3站为例,对使用T511数值预报产品站点的雷暴释用预报技术进行研究。利用2010—2014年T511数值预报产品和单站观测资料,使用BPSO-NBayes方法,建立了0~72 h雷暴预报模型,并与Fisher判别准则和Bayes判别准则进行比较。预报结果表明,BPSO-NBayes模型临界成功指数都在0.29以上,平均值达到0.33以上,是3种方法中最好的,空报率都在0.59以下,漏报率在0.60以下,而且变化幅度很小。BPSO-NBayes模型明显优于Fisher判别准则和Bayes判别准则,具有良好的稳定性和预报能力。In order to study the forecasting technology of thunderstorm interpretation in stations by T511 numerical forecast products,taking Fuzhou,Liancheng and Ningbo as examples,a new thunderstorm forecasting method was proposed,which is Binary Particle Swarm Optimization-Naive Bayesian Classifiers. For the purpose of establishing the prediction model of thunderstorm within 72 hours,compared with Fisher discriminant criterion and Bayes discriminant criterion,T511 numerical forecast products and the corresponding observational station data from 2010 to 2014 were used,and Binary Particle Swarm Optimization-Na6 ve Bayesian Classifiers method was adopted. Results show that each critical success index of thunderstorm forecast model established by BPSO-NBayes is above 0. 29 and the average is greater than 0. 33. It is the best result of three methods. The false alarm rate of each station is below 0. 59. The probability of false omission is under 0. 60. And its magnitude of variety is very little. The BPSO-NBayes model is not only predictive but stable,superior to Fisher discriminant criterion and Bayes discriminant criterion in thunderstorm numerical forecast.
关 键 词:T511数值预报产品 粒子群算法 朴素贝叶斯分类器 雷暴预报
分 类 号:P457.9[天文地球—大气科学及气象学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.222.132.108