农业动力机械设备启动故障检测仿真  被引量:2

Simulation of Starting Fault Detection of Agricultural Power Machinery and Equipment

在线阅读下载全文

作  者:赵丽 ZHAO Li(Department of mechanical and electronic engineering,Shanxi Institute of engineering and technology,Shanxi Yangquan 045000,Chin)

机构地区:[1]山西工程技术学院机械电子工程系,山西阳泉045000

出  处:《计算机仿真》2018年第7期385-388,442,共5页Computer Simulation

摘  要:对农业机械电气设备故障进行优化检测,可以高效提高设备使用寿命。对机械设备故障的检测,需要利用设备故障信号连续性的特点得到离散小波,获得小波中各尺度故障的变换系数,完成机械电气设备故障的优化检测。传统方法利用电气设备各相电流的特点进行对比,获取设备故障电流高低频细节系数,但忽略了对不同尺度的设备故障变换系数的获取,导致故障检测精度偏低。提出基于滑动窗口的电气设备故障优化检测方法。利用对数据流波动的判断,确定滑动窗口的大小,并将疑似故障信号传送给智能终端;将小波进行变换,并从中获得小波的变换系数,利用设备故障信号连续的特点得到离散小波,获得小波中各尺度的变换系数,以达到电气设备故障准确定位的目的。实验表明,所提方法可准确检测出设备中存在的故障信号,并可对故障信号进行高精度的定位,也提高了设备故障的检测效率。The optimization and detection of electrical equipment malfunction of agricultural machinery can effec- tively improve the service life of equipment. The traditional method ignores the acquisition of transformation coeffi- cient of electrical equipment malfunction in different scale, resulting in the low accuracy of fault detection. This arti- cle focuses on a method for optimizing and detecting the fault of electrical equipment based on sliding window. On the basis of judgment of data flow fluctuation, the size of sliding window was determined, and then the suspect fault signal was transmitted to the intelligent terminal. Moreover, the wavelet was transformed, and wavelet transform coefficients were obtained. Finally, the signal continuity of electrical equipment malfunction was used to obtain the discrete wave- let and the wavelet coefficients of each scale. Thus, we achieve the accurate positioning of electrical equipment mal- function. Simulation results prove that the proposed method can accurately detect the fault signal in equipment and lo- cate the fault signal in high precision, which improves the detection efficiency of equipment failure.

关 键 词:电气设备 故障 优化检测 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象