一种低压电力线载波通信路由方法  被引量:14

A routing method of low voltage power line carrier communication

在线阅读下载全文

作  者:朱俊超[1] 彭显刚[1] 杨永 李壮茂 郑凯[1] Zhu Junchao;Peng Xiangang;Yang Yong;Li Zhuangmao;Zheng Kai(Guangdong University of Technology,GuangZhou 510006,China;Maoming Power Supply Bureau of Guangdong Power Grid Corporation,Maoming 525000,Guangdong,China)

机构地区:[1]广东工业大学自动化学院,广州510006 [2]广东电网有限责任公司茂名供电局,广东茂名525000

出  处:《电测与仪表》2018年第11期58-64,共7页Electrical Measurement & Instrumentation

基  金:中国南方电网公司科技项目(GDKJXM00000049)

摘  要:低压电力线载波通信信道常常表现出噪声干扰强、信号衰减大、时变性强,直接影响电力线载波通信的范围,降低电力线载波通信的可靠性。文中通过分析低压电力线网络拓扑结构,提出了一种基于Q学习和改进蚁群系统融合的电力线载波通信路由方法。首先采用Q学习算法对电力线网络进行全局搜索得到各路径上信息素初始值;然后利用蚁群算法正反馈收敛机制以及改进后自适应调整搜索策略得到最优路由。将文中算法与两种蚂蚁系统算法进行仿真对比,结果表明,文中算法能更快地建立起网络中主节点到各从节点的路由,并能根据通信信道的变化动态的维护路由,具有很强的抗毁性和自愈性,提高了低压电力线载波通信的可靠性。Low-voltage power line carrier communication channel often shows strong noise interference,signal attenuation,time-varying strong,which directly affects the power line carrier communication range,and reduces the reliability of power line carrier communication. In this paper,a power line carrier communication method based on Q learning and improved ant colony system fusion is proposed by analyzing the topology of low voltage power line network. Firstly,the Q search algorithm is used to search the power line network globally to obtain the initial value of the pheromone on each path. Then,the ant colony algorithm is used to obtain the optimal path of the positive feedback mechanism and the improved adaptive adjustment search strategy. In this paper,we can compare the algorithm with two ant system algorithms. The results show that the proposed algorithm can quickly and effectively establish the routing of the master node to each slave node in the network and can be based on changes in the communication channel dynamic maintenance routing,and it has a strong resistance to destruction and self-healing,and improve the reliability of low-voltage power line carrier communication.

关 键 词:电力线载波通信 Q学习 蚁群系统 可靠性 

分 类 号:TM933[电气工程—电力电子与电力传动]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象