具有Dzyaloshinskii-Moriya相互作用的XY模型的量子相干性  被引量:2

Quantum coherence of XY model with Dzyaloshinskii-Moriya interaction

在线阅读下载全文

作  者:伊天成 丁悦然 任杰 王艺敏 尤文龙[1,4] Yi Tian-Cheng;Ding Yue-Ran;Ren Jie;Wang Yi-Min;You Wen-Long(College of Physics,Optoelectronics and Energy,Sooehow University,Suzhou 215006,China;Department of Physics,Changshu Institute of Technology,Changshu 215500,China;College of Communications Engineering,The Army Engineering University of PLA,Nanjing 210007,China;Jiangsu Key Laboratory of Thin Films,Soochow University,Suzhou 215006,China)

机构地区:[1]苏州大学物理与光电.能源学院,苏州215006 [2]常熟理工学院物理系,常熟215500 [3]陆军工程大学通信工程学院,南京210007 [4]苏州大学江苏省薄膜材料重点实验室,苏州215006

出  处:《物理学报》2018年第14期51-61,共11页Acta Physica Sinica

基  金:国家自然科学基金(批准号:11474211;61674110;11374043;11404407)资助的课题~~

摘  要:研究了具有Dzyaloshinskii-Moriya(DM)相互作用的一维横场XY自旋链的量子相变和量子相干性.采用约旦-维格纳变换严格求解了哈密顿量,并描绘了体系的关联函数和相图,相图包含反铁磁相、顺磁相和螺旋相.利用相对熵和Jensen-Shannon熵讨论了XY模型的量子相干性.研究发现,相对熵与Jensen-Shannon熵所表现的行为都可以很好地表征该模型的量子相变.非螺旋相中量子相干性不依赖DM相互作用,而在螺旋相DM相互作用对量子相干性有显著影响.此外,指出了在带有DM相互作用的这一类反射对称破缺体系中关联函数计算的常见问题.In this paper, we study the quantum coherence of one-dimensional transverse XY model with Dzyaloshinskii-Moriya interaction, which is given by the following Hamiltonian:H(XY) =sum((1+γ)/2σi-∞σ(i+1)-∞+(1-γ)/2σi-yσ(i+1)-y-hσi-z) from i=1 to N+sum D(σi-∞σ(i+1)-y-σi-yσ(i+1)-∞) from i=1 to N.(8)Here, 0≤γ≤1 is the anisotropic parameter, h is the magnitude of the transverse magnetic field, D is the strength of Dzyaloshinskii-Moriya(DM) interaction along the z direction. The limiting cases such as γ = 0 and 1 reduce to the isotropic XX model and the Ising model, respectively. We use the Jordan-Winger transform to map explicitly spin operators into spinless fermion operators, and then adopt the discrete Fourier transform and the Bogoliubov transform to solve the Hamiltonian Eq.(8) analytically. When the DM interactions appear, the excitation spectrum becomes asymmetric in the momentum space and is not always positive, and thus a gapless chiral phase is induced. Based on the exact solutions, three phases are identified by varying the parameters: antiferromagnetic phase, paramagnetic phase,and gapless chiral phase. The antiferromagnetic phase is characterized by the dominant x-component nearest correlation function, while the paramagnetic phase can be characterized by the z component of spin correlation function. The two-site correlation functions Gr-(xy) and Gr-(yx)(r is the distance between two sites) are nonvanishing in the gapless chiral phase, and they act as good order parameters to identify this phase. The critical lines correspond to h = 1, γ = 2 D,and h =(4D-2-γ-2+1)-(1/2) for γ 0. When γ = 0, there is no antiferromagnetic phase. We also find that the correlation functions undergo a rapid change across the quantum critical points, which can be pinpointed by the first-order derivative.In addition, Gr-(xy) decreases oscillatingly with the increase of distance r. The correlation function Gr-(xy)

关 键 词:量子相变 量子相干性 约旦-魏格纳变换 

分 类 号:O413[理学—理论物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象