透明计算中用户访问行为特征分析与预测  被引量:4

Analysis and prediction for characteristics of user access behavior in transparent computing

在线阅读下载全文

作  者:王斌[1] 陈琳[1] 侯翔宇 李伟民[1] 盛津芳[1] WANG Bin;CHEN Lin;HOU Xiangyu;LI Weimin;SHENG Jinfang(School of Information Science and Engineering,Central South University,Changsha 410083,China)

机构地区:[1]中南大学信息科学与工程学院,长沙410083

出  处:《计算机工程与应用》2018年第16期49-54,62,共7页Computer Engineering and Applications

基  金:国际科技合作与交流专项(No.2013DFB10070)

摘  要:在透明计算中,服务端存储并管理着所有用户所需的操作系统、应用软件和个性化数据,并高效处理来自透明网络的用户资源请求服务。因此,服务端是透明计算系统性能的瓶颈。为制定更高效的缓存策略提供有效的依据,基于信息熵和三次指数平滑对透明计算用户行为特征进行分析和预测。首先基于信息熵策略分析用户访问行为特征,进而利用指数平滑预测算法预测将来一段时间内数据块的访问频率,在真实数据的实验结果上验证了预测方法的有效性。In transparent computing,the server stores and manages the operating system,application and personalized data,and processes users' resource request from transparent networks.So the server is the bottleneck of system performance.User behavior analysis and prediction has received extensive attention in the field of network computing and social networks.However,there is currently no related work focused on the user behavior characteristics mining under the transparent computing.Based on information entropy and cubic exponential smoothing,the user behavior of transparent computing is analyzed and predicted,to provide effective basis for more efficient cache policies.Firstly,the user requirements are analyzed based on information entropy,and then the exponential smoothing algorithm is used to predict the access frequency of blocks in the near future.The experiments on the real data are made to test the effectiveness of prediction.

关 键 词:透明计算 用户访问行为 信息熵 指数平滑 行为预测 

分 类 号:TP391.9[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象