A Griesbachian(Early Triassic) Mollusc Fauna from the Sidazhai Section, Southwest China, with Paleoecological Insights on the Proliferation of Genus Claraia(Bivalvia)  被引量:2

A Griesbachian(Early Triassic) Mollusc Fauna from the Sidazhai Section, Southwest China, with Paleoecological Insights on the Proliferation of Genus Claraia(Bivalvia)

在线阅读下载全文

作  者:Yunfei Huang Jinnan Tong Margaret L Fraiser 

机构地区:[1]School of Geosciences, Yangtze University [2]State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences [3]Department of Geosciences, University of Wisconsin-Milwaukee

出  处:《Journal of Earth Science》2018年第4期794-805,共12页地球科学学刊(英文版)

基  金:supported by the National Natural Science Foundation of China (No. 41502012);the Yangtze Youth Fund of Yangtze University China (No. 2015cqn27)

摘  要:After the end-Permian mass extinction, genus Claraia (Bivalvia) was the most abundant and most noticeable fossil during the survival and recovery stage. However, the reasons for the proliferation of Claraia are still debated. This paper describes a new Griesbachian (Early Triassic) mollusc fauna from deep-water settings in South China in the aftermath of end-Permian mass extinction. This fauna yielded five bivalve species in two genera (Claraia griesbachi, C. wangi, C. stachei, C. radialis, and Promyalina putiatinensis) and two ammonoid species (Ophiceras sp. and Ussuridiscus sp.) and could be assigned to the Claraia wangi-C, griesbachi assemblage zone, indicating a Middle-Late Griesbachian Age. The bivalves were dominated by Claraia griesbachi and were featured by articulated Claraia fossils. As Claraia was epibyssate, it was an excellent autochthonous fauna. While the shallow and deep marine water became dysoxic to anoxic globally, as indicated by recent studies of the early Early Triassic, we suggest the genus Claraia could tolerate dysoxic and/or anoxic conditions and its proliferation could be attributed to its physiological features which were adapted to the stressed environment. The wide distribution of Claraia was probably related to its planktonic larval stage. Where the larva of Claraia could have been transported by ocean flow and increased its potential for long-distance dispersal. In addition, Claraia was a significant disaster and opportunistic taxon during the Early Triassic based on observations in South China.After the end-Permian mass extinction, genus Claraia (Bivalvia) was the most abundant and most noticeable fossil during the survival and recovery stage. However, the reasons for the proliferation of Claraia are still debated. This paper describes a new Griesbachian (Early Triassic) mollusc fauna from deep-water settings in South China in the aftermath of end-Permian mass extinction. This fauna yielded five bivalve species in two genera (Claraia griesbachi, C. wangi, C. stachei, C. radialis, and Promyalina putiatinensis) and two ammonoid species (Ophiceras sp. and Ussuridiscus sp.) and could be assigned to the Claraia wangi-C, griesbachi assemblage zone, indicating a Middle-Late Griesbachian Age. The bivalves were dominated by Claraia griesbachi and were featured by articulated Claraia fossils. As Claraia was epibyssate, it was an excellent autochthonous fauna. While the shallow and deep marine water became dysoxic to anoxic globally, as indicated by recent studies of the early Early Triassic, we suggest the genus Claraia could tolerate dysoxic and/or anoxic conditions and its proliferation could be attributed to its physiological features which were adapted to the stressed environment. The wide distribution of Claraia was probably related to its planktonic larval stage. Where the larva of Claraia could have been transported by ocean flow and increased its potential for long-distance dispersal. In addition, Claraia was a significant disaster and opportunistic taxon during the Early Triassic based on observations in South China.

关 键 词:bivalves CLARAIA disaster species PALEOECOLOGY Early Triassic. 

分 类 号:Q915[天文地球—古生物学与地层学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象