基于势能背景信息的社团标签探测算法  

Community Label Detection Algorithm Based on Potential Background Information

在线阅读下载全文

作  者:宋砚秋[1] 李桂君[1] 李慧嘉[1] SONG Yan- qiu ,LI Guijun ,LI Hui- jia(School of Management Science and Engineering, Central University of Finance and Economics, Beijing 100081, Chin)

机构地区:[1]中央财经大学管理科学与工程学院,北京100081

出  处:《计算机科学》2018年第B06期314-317,347,共5页Computer Science

基  金:国家自然科学基金项目(71473285;71401194);中央高校基本科研业务费专项资金中央财经大学科研创新团队支持计划:科技金融协同创新模式与机制设计研究资助

摘  要:近年来,社团结构分析已经引起很多领域的关注,一些探测方法也陆续被提出。然而,其中大多数方法只利用了网络拓扑结构,并没有考虑内在的背景信息。基于离散势能理论,提出了一种新的半监督社团探测方法,利用标记节点产生的静电场来确定未标记节点的标签(社团标号)。首先给一定数目的节点赋予用户定义的标签;然后利用稀疏线性方程组计算余下节点的标签,其中每个节点的标签被设定为计算出的最大势能值;最后将该方法与现有算法进行比较。实验结果表明,所提算法在现实世界网络和人工基准网络上都展现了很强的探测能力,特别是在只具有模糊大规模社团结构的情况下,该算法仍然具有很高的准确性。In recent years,community structure analysis has attracted much attention in many fields,which aims to partition nodes in a graph into several clusters,in order to achieve a satisfactory state in which each cluster has a densely connected intra-cluster structure and homogeneous attribute value.Existing methods mainly assume that nodes in graphs are cooperative to optimize a given objective function,but ignore their background information in real-life contexts.Based on potential theory,this paper proposed a new semi-supervised community detection algorithm,which uses the electrostatic field generated by the tag node to determine the label of unlabeled nodes(community label).This paper firstly gave a certain number of nodes to the user-defined label,and then used the sparse linear equations to calculate the label of the remaining nodes,where each node's label was set to calculate the maximum potential value.By comparing with the existing algorithms,it is showed that the proposed algorithm has a strong detection ability in terms of the real world network and artificial benchmark network.It is also very accurate even through in the case of fuzzy large-scale community structure.

关 键 词:复杂网络 社团探测 背景信息 势能理论 标签探测 

分 类 号:TP393[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象