检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:池凯凯[1] 徐欣晨 魏欣晨 CHI Kai- kai, XU Xin- chen ,WEI Xin- chen(School of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, Chin)
机构地区:[1]浙江工业大学计算机科学与技术学院,杭州310023
出 处:《计算机科学》2018年第B06期332-336,共5页Computer Science
基 金:国家自然科学基金(61472367;61432015)资助
摘 要:在射频能量捕获无线传感网(Radio Frequency Energy Harvesting Wireless Sensor Networks,RFEH-WSNs)中,基站(即汇聚节点)不仅具有较高的成本,而且其部署位置很大程度地决定了节点的可达吞吐量。文中研究RFEH-WSNs中满足节点吞吐量需求的基站最少化部署问题。首先,将该问题建模为优化问题,以深入理解该问题的本质;然后,提出一种低复杂度的启发式部署算法和一种复杂度略高的基于遗传算法的部署算法。仿真结果表明,这两种算法能找出基站数目较少的可行部署方案。相比于启发式基站部署算法,基于遗传算法的基站部署算法能得到部署基站更少的方案,但计算复杂度略高,适用于规模较小的RFEH-WSNs。In radio frequency energy harvesting wireless sensor networks(RFEH-WSNs),base stations(BSs),i.e.,sinks,not only have high cost,but their deployment positions also greatly determine the achievable throughputs of nodes.This paper studied the minimal BSs deployments satisfying the node throughput requirement.Firstly,this problem was formulated as an optimization problem to deeply understand the essence of this problem.Then,a low-complexity heuristic deployment algorithm and a genetic algorithm based deployment algorithm were proposed.Simulation results show that,these two algorithms can find the BSs deployment with relatively few BSs.Compared to the heuristic deployment algorithm,genetic algorithm based deployment algorithm achieves fewer BSs,but has a little higher computational complexity,and is suitable for small and medium scale RFEH-WSNs.
分 类 号:TN911.2[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.158