检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:屈贤[1] 余烽[1] 赵悦[1] QU Xian;YU Feng;Zhao Yue(Chongqing Vocational Institute of Engineering,College of Mechanical Engineering,Chongqing 402260,China)
机构地区:[1]重庆工程职业技术学院机械工程学院
出 处:《汽车安全与节能学报》2018年第2期164-170,共7页Journal of Automotive Safety and Energy
基 金:重庆工程职业技术学院院级科研项目(KJA201703);重庆市教委科学技术研究资助项目(KJ1603207)
摘 要:为解决驾驶员疲劳驾驶险态辨识的复杂不确定性问题,提出了一种疲劳驾驶行为状态辨识方法。该方法基于熵权灰色关联和Dempster-Shafer(D-S)证据理论,兼顾处理了不同指标的综合性与标识目标的不确定性。利用熵权理论计算指标权重,运用灰色关联分析法,确定各指标的不确定信度,构建不同目标的Mass函数;基于D-S证据理论的Dempster证据合成法则,融合Mass函数,实现驾驶员疲劳驾驶行为险态辨识;运用面部视频的专家评价判断方法检验辨识方法。试验结果表明:该方法在高速工况下识别精度达91.25%。因而,与基于单传感器的检测方法相比,有效提高了驾驶行为辨识的准确性、可靠性。An approach about dangerous driving behavior recognition was proposed to solve the problem of uncertainty and complex in driver's behavior identification. This approach was based on a combination of Dempster-Shafer(D-S) evidence theory with entropy weight grey incidence considering both the comprehension of different indexes and the uncertainty of different goals. The weights of indexes were calculated by entropy theory to determine uncertainty reliabilities with grey relation analysis and to construct a Mass Functions for different goals. Dangerous driver status was identified based on Dempster synthesis rule with D-S theory evidence that integrated Mass functions. An expert evaluation method based on facial video was used to judge driving behaviors. The experimental results show that the method provides the recognition accuracy of 91.25% under high-speed condition. Therefore, the reliability and accuracy of the identification method are significantly higher than those of single sensor are.
关 键 词:汽车安全 疲劳驾驶险态 识别方法 Dempster-Shafer(D-S)证据理论 熵权
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.134.97.32