检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:沈志伟 杨晓敏[1] 吴炜[1] 胡明明 SHEN Zhiwei;YANG Xiaomin;WU Wei;HU Mingming(College of Electronic Information,Sichuan University,Chengdu Sichuan 610065,China)
出 处:《太赫兹科学与电子信息学报》2018年第3期529-534,546,共7页Journal of Terahertz Science and Electronic Information Technology
基 金:国家自然科学基金资助项目(61271330;61411140248;61473198);四川省科技支撑计划资助项目(2014GZ0005)
摘 要:为实现图像超分辨力重建,提出了一个自适应半耦合稀疏字典学习算法。由于耦合字典学习算法中存在稀疏编码约束条件太过严苛的缺点,本文采用半耦合的字典学习算法。根据在半耦合的字典学习算法中全局字典表达的局限性,分析和采用了多字典训练算法及相应的重建方法。提出了基于自适应图像块聚类算法的半耦合稀疏字典学习算法。仿真实验结果显示,新算法重建得到的Butterfly,Cameraman,Foreman,Plants,Hat和Lena等图像的峰值信噪比(PSNR)分别比用基于K-means聚类算法的半耦合稀疏字典学习算法得到的重建图像高出0.18 dB,0.16 dB,0.52 dB,0.21 dB,0.23 dB和0.14 dB。该算法可以得到更好的图像重建效果。In order to achieve higher resolution images, a semi-coupled sparse dictionary learning algorithm by using adaptive image blocks clustering algorithm is proposed. The theoretical basis of semi-coupled sparse dictionary learning algorithm and adaptive image blocks clustering algorithm are studied in this paper. Firstly,according to the application of sparse representation theory in image super resolution algorithm,the coupled and semi-coupled sparse dictionary learning algorithm are introduced. The coupled dictionary learning algorithm assumes that sparse codings of corresponding high and low resolution image blocks are equal, but this assumption is too strict. The semi-coupled dictionary learning algorithm relaxes this assumption,assuming that sparse codings of corresponding high and low resolution image blocks are not equal,but satisfying a linear mapping. Secondly,because the semi-coupled sparse dictionary learning algorithm is more reasonable than the coupled sparse dictionary learning algorithm, in this paper,the semi-coupled sparse dictionary learning algorithm is adopted. Then, according to the limitations of expression of the global dictionary, the multi-dictionary learning algorithm is analyzed. Finally,through the analysis of the traditional image blocks clustering algorithm, a semi-coupled sparse dictionary learning algorithm by using adaptive image blocks clustering algorithm is proposed. The experimental results show that the Peak Signal to Noise Ratios(PSNR) of Butterfly, Cameraman, Foreman, Plants, Hat and Lena images obtained by the proposed algorithm are higher than that of the semi-coupled sparse dictionary learning algorithm based on K-means clustering algorithm by 0.18 dB,0.16 dB, 0.52 dB,0.21 dB,0.23 dB and 0.14 dB respectively. According to the results,a conclusion is drawn that better reconstruction images can be obtained by the proposed method.
关 键 词:自适应聚类 稀疏表示 超分辨力 半耦合字典学习 图像处理
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222