基于深度学习的籽棉中异性纤维检测方法  被引量:14

Detection method of foreign fibers in seed cotton based on deep-learning

在线阅读下载全文

作  者:何晓昀 韦平[2] 张林[2] 邓斌攸 潘云峰 苏真伟 HE Xiaoyun1, WEI Ping2, ZHANG Lin2, DENG Binyou1, PAN Yunfeng1 , SU Zhenwei1,2(1. Guangdong Polytechnic College, Zhaoqing, Guangdong 526100, China;2. School of Manufacturing Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China)

机构地区:[1]广东理工学院,广东肇庆526100 [2]四川大学制造科学与工程学院,四川成都610065

出  处:《纺织学报》2018年第6期131-135,共5页Journal of Textile Research

基  金:国家自然科学基金资助项目(31371536)

摘  要:针对籽棉图像阴影多、常规图像处理方法难于识别的问题,以去除棉叶、棉壳等有机杂物的籽棉为样本,将不同颜色、形状、尺寸的12种常见异性纤维和籽棉样本随机地分布在运转中的传送带上,采用线扫描相机获得发光二极管(LED)照明的籽棉图像520张,"LED+线激光"双光源照明的籽棉图像1 148张。然后采用由13个卷积层、13个采样层和4个池化层构成的Faster RCNN深度学习人工神经网络,对2种成像方法获得的籽棉图像进行基于人工智能的网络训练,再进行异性纤维检测验证。实验数据表明,LED照明和"LED+线激光"双光源照明条件下,籽棉图像中的异性纤维的检出率分别达到了90.3%和86.7%,特别是LED照明条件下对白色异性纤维进行识别,其识别率由5.9%提升到了90.3%。In order to detect foreign fibers in seed cotton with heavy shadows, seed cotton samples without cotton shell and leaves and 12 types of foreign fibers with different colors, shapes and sizes were randomly distributed on a moving convey surface. And then, 520 seed cotton images were obtained under the illuminations of light emitting diode(LED) and 1 148 images were obtained under the illuminations of double light source of LED + linear laser by a color line-scan camera. Then Faster RCNN deep/|learning neural networks composed of 13 convolutional layers, 13 sampling layers and 4 pooling layers were constructed. After training, the neural networks were used for detecting foreign fibers in the two types of seed cotton images respectively. The experimental results indicat that the detecting rates of the targets in the images under the illumination of LED and LED + linear laserare 90.3% and 86.7%, respectively, by the Faster RCNN. Especially, the detecting rate of white color foreign fibers increase from 5.9% to 90.3%.

关 键 词:籽棉 异性纤维 深度学习 人工智能 图像处理 

分 类 号:TS112.7[轻工技术与工程—纺织材料与纺织品设计]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象