检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:何晓昀 韦平[2] 张林[2] 邓斌攸 潘云峰 苏真伟 HE Xiaoyun1, WEI Ping2, ZHANG Lin2, DENG Binyou1, PAN Yunfeng1 , SU Zhenwei1,2(1. Guangdong Polytechnic College, Zhaoqing, Guangdong 526100, China;2. School of Manufacturing Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China)
机构地区:[1]广东理工学院,广东肇庆526100 [2]四川大学制造科学与工程学院,四川成都610065
出 处:《纺织学报》2018年第6期131-135,共5页Journal of Textile Research
基 金:国家自然科学基金资助项目(31371536)
摘 要:针对籽棉图像阴影多、常规图像处理方法难于识别的问题,以去除棉叶、棉壳等有机杂物的籽棉为样本,将不同颜色、形状、尺寸的12种常见异性纤维和籽棉样本随机地分布在运转中的传送带上,采用线扫描相机获得发光二极管(LED)照明的籽棉图像520张,"LED+线激光"双光源照明的籽棉图像1 148张。然后采用由13个卷积层、13个采样层和4个池化层构成的Faster RCNN深度学习人工神经网络,对2种成像方法获得的籽棉图像进行基于人工智能的网络训练,再进行异性纤维检测验证。实验数据表明,LED照明和"LED+线激光"双光源照明条件下,籽棉图像中的异性纤维的检出率分别达到了90.3%和86.7%,特别是LED照明条件下对白色异性纤维进行识别,其识别率由5.9%提升到了90.3%。In order to detect foreign fibers in seed cotton with heavy shadows, seed cotton samples without cotton shell and leaves and 12 types of foreign fibers with different colors, shapes and sizes were randomly distributed on a moving convey surface. And then, 520 seed cotton images were obtained under the illuminations of light emitting diode(LED) and 1 148 images were obtained under the illuminations of double light source of LED + linear laser by a color line-scan camera. Then Faster RCNN deep/|learning neural networks composed of 13 convolutional layers, 13 sampling layers and 4 pooling layers were constructed. After training, the neural networks were used for detecting foreign fibers in the two types of seed cotton images respectively. The experimental results indicat that the detecting rates of the targets in the images under the illumination of LED and LED + linear laserare 90.3% and 86.7%, respectively, by the Faster RCNN. Especially, the detecting rate of white color foreign fibers increase from 5.9% to 90.3%.
分 类 号:TS112.7[轻工技术与工程—纺织材料与纺织品设计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249