检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王健[1] 向峰[1] 邱飞[1] 王华[1] 刘慧 WANG Jian;XIANG Feng;QIU Fei;WANG Hua;LIU Hui(Yunnan Environmental monitoring center,Kunming Yunnan 650034,China)
出 处:《环境科学导刊》2018年第4期63-67,共5页Environmental Science Survey
摘 要:根据水质预测模型理论基础的不同,重点介绍了水质模拟模型、神经网络模型、回归分析模型以及灰色理论模型,分别对模型的优缺点及适用性进行了分析。针对水质预测模型研究现状,提出了模型发展所需要解决的问题和未来的发展趋势。Water environment is a complex system,and its water quality condition is influenced by a variety of factors together with significant spatial and temporal variability. The water quality prediction model as one important tool provides support for water environment quality assessment,pollution control strategy and decision-making.According to the theoretical basis of water quality prediction model,water quality simulation models,neural network models,regression analysis models and gray theoretical models were introduced. The advantages,disadvantages,and application scope of each model were also analyzed respectively. In view of the current situation of water quality prediction model,the problems and future development trend of models were put forward.
关 键 词:水质预测模型 人工神经网络模型 回归分析模型 灰色理论模型 综述
分 类 号:X824[环境科学与工程—环境工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.112