Partial melting of ultrahigh-pressure metamorphic rocks at convergent continental margins: Evidences, melt compositions and physical effects  被引量:6

Partial melting of ultrahigh-pressure metamorphic rocks at convergent continental margins: Evidences, melt compositions and physical effects

在线阅读下载全文

作  者:Liang-Peng Deng Yi-Can Liu Xiao-Feng Gu Chiara Groppo Franco Rolfo 

机构地区:[1]CAS Key Laboratory of Crust-Mantle Materials and Environments,School of Earth and Space Sciences,University of Science and Technology of China [2]Department of Earth Sciences,University of Torino [3]C.N.R.- I.G.G.,Section of Torino

出  处:《Geoscience Frontiers》2018年第4期1229-1242,共14页地学前缘(英文版)

基  金:financially supported by the National Basic Research Program of China (Grant No. 2015CB856104);the National Natural Science Foundation of China (Grant No. 41273036)

摘  要:Ultrahigh-pressure(UHP) metamorphic rocks are distinctive products of crustal deep subduction,and are mainly exposed in continental subduction-collision terranes. UHP slices of continental crust are usually involved in multistage exhumation and partial melting, which has obvious influence on the rheological features of the rocks, and thus significantly affect the dynamic behavior of subducted slices. Moreover,partial melting of UHP rocks have significant influence on element mobility and related isotope behavior within continental subduction zones, which is in turn crucial to chemical differentiation of the continental crust and to crust-mantle interaction.Partial melting can occur before, during or after the peak metamorphism of UHP rocks. Post-peak decompression melting has been better constrained by remelting experiments; however, because of multiple stages of decompression, retrogression and deformation, evidence of former melts in UHP rocks is often erased. Field evidence is among the most reliable criteria to infer partial melting. Glass and nanogranitoid inclusions are generally considered conclusive petrographic evidence. The residual assemblages after melt extraction are also significant to indicate partial melting in some cases. Besides field and petrographic evidence, bulk-rock and zircon trace-element geochemical features are also effective tools for recognizing partial melting of UHP rocks. Phase equilibrium modeling is an important petrological tool that is becoming more and more popular in P-T estimation of the evolution of metamorphic rocks; by taking into account the activity model of silicate melt, it can predict when partial melting occurred if the P-T path of a given rock is provided.UHP silicate melt is commonly leucogranitic and peraluminous in composition with high SiO_2,low MgO, FeO, MnO, TiO_2 and CaO, and variable K_2 O and Na_2 O contents. Mineralogy of nanogranites found in UHP rocks mainly consists of plagioclase + K-feldspar + quartz, plagioclase being commonly albite-rich.TrUltrahigh-pressure(UHP) metamorphic rocks are distinctive products of crustal deep subduction,and are mainly exposed in continental subduction-collision terranes. UHP slices of continental crust are usually involved in multistage exhumation and partial melting, which has obvious influence on the rheological features of the rocks, and thus significantly affect the dynamic behavior of subducted slices. Moreover,partial melting of UHP rocks have significant influence on element mobility and related isotope behavior within continental subduction zones, which is in turn crucial to chemical differentiation of the continental crust and to crust-mantle interaction.Partial melting can occur before, during or after the peak metamorphism of UHP rocks. Post-peak decompression melting has been better constrained by remelting experiments; however, because of multiple stages of decompression, retrogression and deformation, evidence of former melts in UHP rocks is often erased. Field evidence is among the most reliable criteria to infer partial melting. Glass and nanogranitoid inclusions are generally considered conclusive petrographic evidence. The residual assemblages after melt extraction are also significant to indicate partial melting in some cases. Besides field and petrographic evidence, bulk-rock and zircon trace-element geochemical features are also effective tools for recognizing partial melting of UHP rocks. Phase equilibrium modeling is an important petrological tool that is becoming more and more popular in P-T estimation of the evolution of metamorphic rocks; by taking into account the activity model of silicate melt, it can predict when partial melting occurred if the P-T path of a given rock is provided.UHP silicate melt is commonly leucogranitic and peraluminous in composition with high SiO_2,low MgO, FeO, MnO, TiO_2 and CaO, and variable K_2 O and Na_2 O contents. Mineralogy of nanogranites found in UHP rocks mainly consists of plagioclase + K-feldspar + quartz, plagioclase being commonly albite-rich.Tr

关 键 词:Partial melting Continental subduction-collision Ultrahigh-pressure metamorphism Leucosome Phase equilibrium modeling 

分 类 号:P588.3[天文地球—岩石学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象