检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《振动.测试与诊断》2018年第3期619-626,共8页Journal of Vibration,Measurement & Diagnosis
基 金:国家自然科学基金资助项目(51576036);吉林省科技发展计划资助项目(20100506)
摘 要:为了提高汽轮机转子故障诊断的准确率和识别效率,提出了一种基于混沌的生物地理学优化算法(biogeography-based optimization with chaos,简称CS-BBO)和支持向量机(support vector machine,简称SVM)相结合的故障诊断方法。首先,将混沌理论引入到生物地理学优化算法(biogeography-based optimization,简称BBO)中,得到CS-BBO算法;其次,通过CS-BBO算法优化SVM得到诊断模型的最优参数,增强SVM的学习能力和泛化能力;最后,通过ZT-3转子试验台模拟汽轮机转子故障,利用得到的4种状态下的试验数据验证优化模型的有效性。结果表明:CS-BBO算法优化SVM的模型可以准确、高效地对汽轮机转子进行故障诊断;与BBO算法优化SVM模型相比,该方法的故障诊断准确率和识别效率更高。
关 键 词:支持向量机 参数优化 混沌生物地理学优化算法 故障诊断 汽轮机转子
分 类 号:TK267[动力工程及工程热物理—动力机械及工程] TH17[机械工程—机械制造及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.107