检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:宋骁 高兴森[1] 刘俊明[2] Song Xiao;Gao Xing-Sen;Liu Jun-Ming(Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials,South China Normal University,Guangzhou 510006,China;National Laboratory of Solid State Microstructures,Nanjing University,Nanjing 210093,China)
机构地区:[1]华南师范大学,先进材料研究所及量子调控工程与材料广东省重点实验室,广州510006 [2]南京大学,固体微结构国家实验室,南京210093
出 处:《物理学报》2018年第15期169-185,共17页Acta Physica Sinica
基 金:国家重点研发计划(批准号:2016YFA0201002); 国家重点基础研究发展计划(批准号:2015CB921202); 国家自然科学基金(批准号:11674108,51272078); 广东高校珠江学者特聘教授计划(2014); 广东省科技计划应用型资金专项(批准号:2015B090927006); 广东省自然科学基金(批准号:2016A030308019)资助的课题
摘 要:近年来,多铁异质结中电控磁性研究引起了广泛关注,已成为多铁领域的热点.现代自旋电子学器件(如磁内存)通常利用电流产生的磁场或自旋转移扭矩效应驱动磁反转来实现数据擦写,但这带来高额能耗和热量,成为亟待解决的关键难题.而利用多铁异质结实施电场驱动磁反转则有望大幅降低能耗,从而实现高速、低能耗、高稳定性新型高密度磁存储、逻辑及其他自旋电子学器件.在当前器件发展的微型化趋势下,探索可集成化的微纳尺度电场驱动磁反转方案显得越发重要.本文针对发展新型磁电器件所面临的微型化关键问题,回顾了微纳尺度电场驱动磁反转研究的新进展,主要关注小尺度多铁异质结中电控磁的新特点、新方法及相关物理机理的实验和理论成果,讨论了进入纳米尺度将面临的挑战,并对未来研究工作提出一些展望.Recently, there has been a surge of research interest in the electric field control of magnetism due to its promising application in spintronic and memory devices, which has become a hot topic in the field of multiferroic research. In current spintronic technology, magnetic reversal is usually driven by a large electric current via current generated magnetic field or spin-torque effect to write/erase a magnetic bit, and thus producing large power consumption and heat dissipation.While using insulating multiferroic materials, the reversal of magnetization can be triggered by applying an electric field instead of current, hence dramatically reducing the energy consumption and heat dissipation. With the current miniature trend in microelectronic technology, it is very essential to explore the electric field driven magnetic reversal(EFMS) behaviours in a micro/nanometer scale. In this article we briefly review the new progress in the field of EFMS based on multiferroic heterostructures, including some new features arising from size reduction, as well as some recent experimental and theoretical advances towards nanoscale EFMS, e.g. strain-mediated coupling, or spin exchange coupling in Bi Fe O3-based heterostructures, and their associated mechanisms. Finally, some key challenges in developing future EFMS based magnetoelectric devices, and some prospects for future research are also discussed.
关 键 词:电场驱动磁反转 多铁性材料 纳米磁体 磁电随机存储器
分 类 号:TB34[一般工业技术—材料科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.46