Asymptotic Properties of Maximum Quasi-Likelihood Estimators in Generalized Linear Models with Diverging Number of Covariates  被引量:1

Asymptotic Properties of Maximum Quasi-Likelihood Estimators in Generalized Linear Models with Diverging Number of Covariates

在线阅读下载全文

作  者:GAO Qibing DU Xiuli ZHOU Xiuqing XIE Fengchang 

机构地区:[1]School of Mathematics Science, Nanjing Normal University

出  处:《Journal of Systems Science & Complexity》2018年第5期1362-1376,共15页系统科学与复杂性学报(英文版)

基  金:supported by Major Programm of Natural Science Foundation of China under Grant No.71690242;the Natural Science Foundation of China under Grant No.11471252;the National Social Science Fund of China under Grant No.18BTJ040

摘  要:In this paper, for the generalized linear models (GLMs) with diverging number of covariates, the asymptotic properties of maximum quasi-likelihood estimators (MQLEs) under some regular conditions are developed. The existence, weak convergence and the rate of convergence and asymptotic normality of linear combination of MQLEs and asymptotic distribution of single linear hypothesis teststatistics are presented. The results are illustrated by Monte-Carlo simulations.

关 键 词:Asymptotic normality diverging dimension generalized linear models linear hypothesis maximum quasi-likelihood estimators. 

分 类 号:O212[理学—概率论与数理统计]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象