E(f_(NOD))最优混水平超饱和设计的构造  

Construction of E(f_(NOD))-optimal mixed-level supersaturated designs

在线阅读下载全文

作  者:周海婴 张崇岐 ZHOU Hai-ying;ZHANG Chong-qi(School of Applied Mathematics,Beijing Normal University Zhuhai,Zhuhai 519087,China;School of Economics and Statistics,Guangzhou University,Guangzhou 510006,China)

机构地区:[1]北京师范大学珠海分校应用数学学院,广东珠海519087 [2]广州大学经济与统计学院,广东广州510006

出  处:《广州大学学报(自然科学版)》2018年第3期6-10,共5页Journal of Guangzhou University:Natural Science Edition

摘  要:超饱和设计是一类因子主效应数超过试验次数的设计,由于其在因子筛选试验中的作用而受到广泛关注.等水平超饱和设计及分析已经得到广泛的研究,而混水平超饱和设计需要进一步研究.文章的主要目的是提供一个构造混水平E(fNOD)最优设计的方法,通过一个E(fNOD)最优设计与一个正交阵的转置得到一个新的E(fNOD)最优设计,使因子个数有很大增加.A supersaturated design is essentially a factorial design with the equal occurrence of levels property and no fully aliased factors in which the number of main effects is greater than the number of runs. It attracts a lot of interest because of its potential in factor screening experiments. The construction and analysis of symmetrical supersaturated designs have been widely explored, while asymmetrical (or mixed-level) supersaturated designs deserve further investigation. The main purpose of this article is to provide constructing methods for E(f NOD ) -optimal mixed-level supersaturated designs. We use a E(f NOD ) -optimal design and an orthogonal array (OA) to construct a new E(f NOD ) -optimal supersaturated designs with more mixed-level factors.

关 键 词:超饱和设计 E(fNOD)最优设计 正交性 均匀性 列并置 Kroneeker和 正交阵 

分 类 号:O212.6[理学—概率论与数理统计]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象