检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:邓万宇[1] 刘丹[1] 董莹莹 张莎莎 刘光达 DENG Wan-yu;LIU Dan;DONG Ying-ying;ZHANG Sha-sha;LIU Guang-da(School of Computer,Xi’ an University of Post & Telecommunications,Xi’ an 710061,China)
出 处:《信息技术》2018年第7期39-42,共4页Information Technology
基 金:西安邮电大学创新基金项目(CXL2016-39)
摘 要:近来,有效和准确地诊断阿尔兹海默症已经引起了越来越多的关注。然而,许多的研究只关注于单模态,并且现有的中小规模特征选择方法很难有效地从大量的特征集合中识别出相关的特征子集。文中围绕多模数据融合,旨在研究高维中等样本的特征选择算法,能够有效识别与疾病紧密相关的特征,进而从健康对照组中准确地分类出AD患者。结果表明,文中所提出的方法分类性能优于其它方法。Recently,it is attracted more and more attention to diagnose Alzheimer's disease(AD)effectively and accurately. However,many research focus on only a single modality,and most existing small and medium scale feature selection method make it difficult to identify relevant feature subsets from a large number of feature sets. The method focus on multi-modality data fusion,which aims to study feature selection algorithm of high dimensional data,and it can effectively identify relevant disease feature and then successfully classify AD from healthy controls. As a result, the method shows better classification performance than other methods.
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.20