一种基于社交网络的电子商务信任模型与仿真  被引量:4

Trust Model and Simulation of E-commerce Based on Social Networks

在线阅读下载全文

作  者:于真[1,2,3] 朱杰 申贵成[1,2,3] Yu Zhenl,;Zhu Jie;Shen Guicheng(School of Information,Beijing Wuzi University,Beijing 101149,China;Beijing Intelligent Logistics System Collaborative Innovation Center,Beijing 101149,China;Beijing key Laboratory of Intelligent Logistics System,Beijing 101149,China.)

机构地区:[1]北京物资学院信息学院,北京101149 [2]北京市智能物流系统协同创新中心,北京101149 [3]智能物流系统北京市重点实验室,北京101149

出  处:《系统仿真学报》2018年第8期3115-3123,共9页Journal of System Simulation

基  金:北京市教育委员会社科计划一般项目(SM2016 10037005);北京物资学院高级别项目培育项目(GJB20156001);北京物资学院科技协同攻关团队项目(2017GG04)

摘  要:当前电子商务行业中,用户购买商品前大多需要查看针对该商品的历史评价,但是目前广泛存在的虚假推荐及海量冗余推荐问题严重影响了用户获取推荐的有效性和准确性。针对电子商务交易中信任的获取,提出一种基于社交网络的电子商务信任模型SNTrust。在SNTrust中,每个用户维护一个可信社交网络集合;模型阐述了用户在社交网络中消息扩散的拓扑结构,引入了推荐节点的综合信任度来衡量其可信程度,给出了交易的信任值求解算法。仿真实验表明,SNTrust信任模型可以有效提高电子商务的交易成功率,一定程度上遏制恶意节点行为。In the current e-commerce industry, users need to check for the historical evaluation of the commodity before buying goods mostly, but false recommendations and massive redundancy recommendation problem which widely exists at present seriously affect the effectiveness and accuracy of users' obtaining recommendations. For getting trust in e-commerce transactions, an e-commerce trust model SNTrust based on social networks is proposed. In SNTrust model, each user maintains a trusted social network set," a topological structure of the user information diffusion in the social network is described in the model, and the recommendation node trust is introduced to measure its credibility, the algorithm to compute the trust value of a transaction is given. Simulation results show that the SNTrust trust model can effectively improve success rates of e-commerce transactions, and curb the malicious behavior to a certain extent.

关 键 词:电子商务 社交网络 信任计算 推荐 

分 类 号:TP393[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象