Heterostructure Ag@WO3-x Composites with High Selectivity for Breaking Azo-bond  被引量:1

Heterostructure Ag@WO3-x Composites with High Selectivity for Breaking Azo-bond

在线阅读下载全文

作  者:FANG Zhenxing CHEN Yan WANG Boran JIAO Shihui PANG Guangsheng 

机构地区:[1]State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China

出  处:《Chemical Research in Chinese Universities》2018年第4期517-522,共6页高等学校化学研究(英文版)

基  金:Supported by the National Natural Science Foundation of China(No.21371066).

摘  要:The heterostructure Ag@WO3-x(x=0.1 or 1) composites with high selectivity for breaking azo-bond were obtained by in situ reduction of Ag2WO4. The crystal structure and morphology of Ag@WO3-x were characterized by X-ray powder diffraction(XRD), scanning electron microscope(SEM) and transmission electron microscope(TEM). The residue solution of methyl orange(MO) after degradation was tested by gas chromatograph mass spectrometer (GCMS) to analyze the exact components. The results indicate that the products after degradation are N,N-dimethylaniline, N,N-dimethyl-p-phenylenediamine and sulfanilic acid. This is caused by specific breaking of azo-bond in MO. The azo-bond breaking of MO by Ag@WO3-x could occur in dark without any light illumination. Therefore, we proposed a possible mechanism for this azo-bond breaking reaction based on the reaction condition and results.The heterostructure Ag@WO3-x(x=0.1 or 1) composites with high selectivity for breaking azo-bond were obtained by in situ reduction of Ag2WO4. The crystal structure and morphology of Ag@WO3-x were characterized by X-ray powder diffraction(XRD), scanning electron microscope(SEM) and transmission electron microscope(TEM). The residue solution of methyl orange(MO) after degradation was tested by gas chromatograph mass spectrometer (GCMS) to analyze the exact components. The results indicate that the products after degradation are N,N-dimethylaniline, N,N-dimethyl-p-phenylenediamine and sulfanilic acid. This is caused by specific breaking of azo-bond in MO. The azo-bond breaking of MO by Ag@WO3-x could occur in dark without any light illumination. Therefore, we proposed a possible mechanism for this azo-bond breaking reaction based on the reaction condition and results.

关 键 词:HETEROSTRUCTURE In situ reduction Azo-bond 

分 类 号:O623.425[理学—有机化学] TN16[理学—化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象