基于接尘工人职业健康监测的肺纤维化判别模型研究  被引量:1

The Discriminant Model for Pulmonary Fibrosis in Dust Exposed Workers Based on Monitoring Data of Occupational Health

在线阅读下载全文

作  者:廖洪秀[1,2] 兰亚佳[2] 何琳[2] 他卉 曹应琼 杜利利[3] LIAO Hongxiu;LAN Yajia;HE Lin;TA Hua;CAO Yingqiong;DU Lili(Panzhihua Municipal Center for Disease Control and Prevention,Panzhihua 617000,Sichuan Province,China.)

机构地区:[1]攀枝花市疾病预防控制中心,四川攀枝花617000 [2]四川大学华西公共卫生学院,成都610041 [3]四川省疾病预防控制中心,成都610041

出  处:《预防医学情报杂志》2018年第10期1252-1255,共4页Journal of Preventive Medicine Information

基  金:四川省科技厅科研项目(项目编号:2013SZ0014)

摘  要:目的通过分析接尘工人肺纤维化影响因素,建立接尘工人肺纤维化的Bayes判别模型,为动态监测接尘工人肺纤维化提供参考。方法采用2015-10/2017-05四川省重点职业病职业健康检查监测数据,提取其中接触煤尘有害因素的职业健康体检信息进行分析,采用Logistic回归分析筛选接尘工人肺纤维化的影响因素,构建Bayes判别模型,对接尘工人肺纤维化进行预测。结果根据监测数据,Logistic回归筛选出影响接尘工人肺纤维化有统计学意义的因素有:接触所监测危害因素工龄、血压舒张压、肺功能FEV1/FVC、心电图、企业类型、行业、年龄,综合专业知识、专家意见及判别分析特点,将总工龄、肺功能FVC、肺功能FEV1也纳入Bayes判别模型。模型经回代检验,构建的Bayes判别模型预测准确率为71.1%。ROC曲线下面积为0.801(P<0.05)。结论 Bayes判别模型可以作为动态监测接尘工人肺纤维化的辅助方法,提供划定重点监护人群的参数信息,为早期预测接尘工人肺纤维化提供参考。Objective To analyze the influencing factors and establish Bayes discriminant model so as to provide reference for dynamic monitoring of lung fibrosis in workers exposed to dust. Methods The monitoring data of occupational health examination for key occupational diseases in Sichuan Province from October 2015 to May 2017 were used to analyze the harmful factors by Logistic regression and construct a Bayesian discriminant model to predict lung fibrosis in workers exposed to dust. Results According to the monitoring data,Logistic regression analysis showed that statistically significant factors affecting lung fibrosis in dust exposed workers included length of service exposed to the hazards( years),diastolic blood pressure,lung function FEV1/FVC,ECG,the enterprise type,profession and age.Considering expertise, expert opinions and the characteristics of discriminative analysis, the total length of service,pulmonary function FVC and FEV1 were also included in the Bayes discriminant model.According to return test,the prediction accuracy was 73. 8 %. The area under the ROC curve was 0. 801( P〈0. 05) and statistically significant. Conclusion The Bayes discriminant model can be used as an auxiliary method for dynamic monitoring of pulmonary fibrosis in dust exposed workers,and provide information about the parameters of the key care population and reference for early prediction of lung fibrosis in dust exposed workers.

关 键 词:LOGISTIC回归 Bayes判别 肺纤维化 健康体检 

分 类 号:R135[医药卫生—劳动卫生]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象