机构地区:[1]School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China [2]Key Laboratory of Vibration and Control of Aero-Propulsion System Ministry of Education, Northeastern University, Shenyang 110819, China [3]School of Mechanical Engineering, Dalian University of Technology,Dalian 116000, China
出 处:《Frontiers of Mechanical Engineering》2018年第4期571-580,共10页机械工程前沿(英文版)
基 金:Acknowledgements This work was supported by the National Natural Science Foundation of China (Grant No. 11572082), the Excellent Talents Support Program in Institutions of Higher Learning in Liaoning Province of China (Grant No. LJQ2015038), and the Fundamental Research Funds for the Central Universities of China (Grant Nos. N160312001, N150304004, and N140301001).
摘 要:A balancing method without trial weights based on the dynamic similitude scale model was proposed as a solution to the balancing problem of a large-scale rotor system. This method could be used to directly obtain the required coefficients for the balancing problem of the prototype system through a similarity model test without a prototype test. Thus, the weight test process of the prototype system was effectively eliminated in the proposed balancing method. First, with the rotor system as the research object, the analytical expression of the influence coefficient was derived on the basis of rotor dynamics theory. Then, through calculation and dimen- sional analysis methods, the similitude relationships of the rotor system and the influence coefficient were deduced on the basis of dynamic similitude theory. The correctness of the proposed similitude relationships was verified through numerical simulation and experiment. The balancing method without trial weights was proposed based on the similitude relationship of the influence coefficient. The effect of the balancing method without trial weights was compared with that of the traditional influence coefficient method through numerical simulation, and the results verified the correctness and effectiveness of the proposed balancing method. The results of this study provide theoretical supplements for the balancing method and the similitude design of the rotor system.A balancing method without trial weights based on the dynamic similitude scale model was proposed as a solution to the balancing problem of a large-scale rotor system. This method could be used to directly obtain the required coefficients for the balancing problem of the prototype system through a similarity model test without a prototype test. Thus, the weight test process of the prototype system was effectively eliminated in the proposed balancing method. First, with the rotor system as the research object, the analytical expression of the influence coefficient was derived on the basis of rotor dynamics theory. Then, through calculation and dimen- sional analysis methods, the similitude relationships of the rotor system and the influence coefficient were deduced on the basis of dynamic similitude theory. The correctness of the proposed similitude relationships was verified through numerical simulation and experiment. The balancing method without trial weights was proposed based on the similitude relationship of the influence coefficient. The effect of the balancing method without trial weights was compared with that of the traditional influence coefficient method through numerical simulation, and the results verified the correctness and effectiveness of the proposed balancing method. The results of this study provide theoretical supplements for the balancing method and the similitude design of the rotor system.
关 键 词:rotor system dynamic similitude balancing without trial weights influence coefficient
分 类 号:TH311[机械工程—机械制造及自动化] TH113
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...