检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陆勰 罗守山[1] 张玉梅 LU Xie;LUO Shoushan;ZHANG Yumei(Information Security Center,Beijing University of Posts andTelecommunications,Beijing 100816,China;Chinese People's Armed Police Force Corps of Tianjin,Tianjin 300001,China)
机构地区:[1]北京邮电大学信息安全中心,北京100876 [2]武警天津总队参谋部综合信息保障中心,天津300001
出 处:《信息网络安全》2018年第8期56-63,共8页Netinfo Security
基 金:国家高技术研究发展计划(863计划)[2015AA016005]
摘 要:大数据环境下,网络安全事件层出不穷,网络安全成为各界关注的热点。安全日志记录着设备运行状态的重要信息,通过对其分析可以实时掌握网络安全态势,可作为事前防护、事后追责的安全审计手段,实现对异常事件的追责与溯源。针对日志审计的重要性并结合数据挖掘在日志分析领域的重要作用,同时针对单机环境下处理海量数据效率相对滞后等问题,文章提出一种基于Hadoop的面向海量安全日志的聚类算法。首先,文章提出了基于最大最小距离(MMD)和均值思想对K-means聚类算法进行改进,克服了传统K-means聚类算法在寻找初始聚类中心随机性的缺陷;其次,为了适应海量数据的有效处理,提高聚类的效率与速度,将改进的K-means聚类算法部署在Map/Reduce上进行迭代计算。实验表明,改进的聚类算法的准确性优于其他典型算法,聚类效果稳定,在集群的性能上具有较好的运行速度和加速比。In the big data environment, network security incidents emerge one after another, and network security has become a hot spot of concern. As a dark data in the new environment, the security log records the important information of the running status of the equipment. Through its analysis, it can grasp the network security situation in real time, and can be used as a security auditing tool for pre-protection and after-accusation, to achieve abnormal events. Aiming at the importance of log auditing and combining the important role of data mining in the field of log analysis, and aiming at the relative lag of processing massivedata in a single machine environment, a clustering algorithm based on Hadoop for massive security log is proposed. Firstly, the ^-means clustering algorithm is improved based on the maximum and minimum distance (MMD) and the mean value, which overcomes the defect of the traditional ^-means algorithm in finding the randomness of the initial cluster center. Secondly, in order to adapt to the massive data. Effectively process, improve the efficiency and speed of clustering, and deploy the improved ^-means clustering algorithm on Map/ Reduce for iterative calculation. Experiments show that the improved clustering algorithm proposed in this paper is better than other typical methods, and the clustering effect is stable. It has better running speed and speedup ratio in cluster performance.
关 键 词:安全日志 聚类 尤-means MAP/REDUCE HADOOP
分 类 号:TP309[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.116.230.250