检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:伍秋玉 张明新[2] 刘永俊[2,3] 郑金龙 WU Qiuyu1,2, ZHANG Mingxin2, LIU Yongjun2,3, ZHENG Jinlong2(1. School of Computer Science and Technology, China University of Mining and Technology, Xuzhou Jiangsu 221116, China; 2. School of Computer Science and Engineering, Changshu Institute of Technology, Changshu Jiangsu 215500, China ; 3. School of Computer Science and Engineering, Northeastern University, Shenyang Liaoning 110819, Chin)
机构地区:[1]中国矿业大学计算机科学与技术学院,江苏徐州221116 [2]常熟理工学院计算机科学与工程学院,江苏常熟215500 [3]东北大学计算机科学与工程学院,沈阳110819
出 处:《计算机应用》2018年第8期2398-2404,共7页journal of Computer Applications
基 金:国家自然科学基金资助项目(61173130)~~
摘 要:迭代收缩阈值算法(ISTA)求解离焦深度恢复动态优化问题时,采用固定迭代步长,导致算法收敛效率不佳,使得重建的微观3D形貌精度不高。为此,提出一种基于加速算子梯度估计和割线线性搜索的方法优化ISTA——FL-ISTA。首先,在每一次迭代中,由当前点和前一个点的线性组合构成加速算子重新进行梯度估计,更新迭代点;其次,为了改变迭代步长固定的限制,引入割线线性搜索,动态确定每次最优迭代步长;最后,将改进的迭代收缩阈值算法用于求解离焦深度恢复动态优化问题,加快算法的收敛速度、提高微观3D形貌重建的精度。在对标准500 nm尺度栅格的深度信息重建实验中,与ISTA、快速ISTA(FISTA)和单调快速ISTA(MFISTA)相比,FL-ISTA收敛速度均有所提升,重建的深度信息值下降了10个百分点,更接近标准500 nm栅格尺度;与ISTA相比,FL-ISTA重建的微观3D形貌均方差(MSE)和平均误差分别下降了18个百分点和40个百分点。实验结果表明,FL-ISTA有效提升了求解离焦深度恢复动态优化问题的收敛速度,提高了微观3D形貌重建的精度。Iterative Shrinkage Thresholding Algorithm( ISTA) often uses fixed iteration step to solve the dynamic optimization problem of depth from defocus,which leads to poor convergence efficiency and low accuracy of reconstructed microscopic 3 D shape. A method based on gradient estimation of acceleration operator and secant linear search,called Fast Linear Iterative Shrinkage Thresholding Algorithm( FL-ISTA),was proposed to optimize ISTA. Firstly,the acceleration operator,which consists of the linear combination of the current and previous points,was introduced to reestimate the gradient and update the iteration point during each iteration process. Secondly,in order to change the restriction of the fixed iteration step,secant linear search was used to determine the optimal iteration step dynamically. Finally,the improved algorithm was applied to solve the dynamic optimization problem of depth from defocus,which accelerated the convergence of the algorithm and improved the accuracy of reconstructed microscopic 3 D shape. Experimental results of reconstructed standard 500 nm grid show that compared with ISTA,FISTA( Fast ISTA) and MFISTA( Monotohy FISTA),the efficiency of FL-ISTA was improved and the depth from defocus decreased by 10 percentage points,which is closer to the scale of standard 500 nm grid.Compared with ISTA,the Mean Square Error( MSE) and average error of microscopic 3 D shape reconstructed by FL-ISTA were decreased by 18 percentage points and 40 percentage points respectively. The experimental results indicate that FL-ISTA can effectively improve the convergence rate of solving the dynamic optimization problem of depth from defocus and elevate the accuracy of the reconstructed microscopic 3 D shape.
关 键 词:微观3D重建 离焦深度恢复 迭代收缩阈值算法 加速算子梯度估计 割线线性搜索
分 类 号:TP274[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.12.102.192