Cu-Ag合金原位纤维复合材料研究现状  被引量:14

Research Status of Cu-Ag Alloy In-situ Filamentary Composites

在线阅读下载全文

作  者:何钦生 邹兴政 李方 唐锐 赵安中 田世龙[3] HE Qinsheng;ZOU Xingzheng;LI Fang;TANG Rui;ZHAO Anzhong;TIAN Shilong(Chongqing Materials Research Institute Co.,Ltd.,Chongqing 400707;National Instrument Functional Materials Engineering Technical Research Center,Chongqing 400707;School of Metallurgy and Material Engineering,Chongqing University of Science and Technology,Chongqing 401331)

机构地区:[1]重庆材料研究院有限公司,重庆400707 [2]国家仪表功能材料工程技术研究中心,重庆400707 [3]重庆科技学院冶金与材料工程学院,重庆401331

出  处:《材料导报》2018年第15期2684-2692,2700,共10页Materials Reports

基  金:国家重点研发计划(2016YFB0402600)

摘  要:凝聚态物理、材料科学、化学和生物科学的研究需要用到强磁场技术,铁磁线圈是强磁场装置(特别是脉冲强磁场装置)的基础部件,由高导热性、高导电性和高强度的材料组成,Cu-Ag合金原位纤维复合材料应运而生,其相关报道最早可追溯到20世纪六七十年代。Cu-Ag合金原位纤维复合材料是一种纳米晶双相复合材料,较单相材料具有更高的强度和热稳定性,同时还具有较强的导电性能。经过半个世纪的发展,Cu-Ag合金原位纤维复合材料的应用范围扩展到框架材料、接触线及接头等,Ag含量由最初的80%降低至10%~30%(均为质量分数),成本显著降低,且具有相当的电学和力学性能。在此期间,大塑性变形过程中组织形态结构的演变、相界面、相间距及尺寸等对性能的影响已经得到了较充分的研究,并且能通过热处理技术调和变形过程中强度上升而电导率下降的矛盾;研究者们还通过加入Cr、Nb、Zr、Y、Gd、Ce等第三甚至第四组元进行微合金化,在替代Ag的同时产生更多对合金有益的作用,以期进一步提高强度、塑性等综合性能,并取得了一定成效。但早期的研究还存在一些不足:(1)未从更微观的角度进行更深入的研究;(2)传统的多道次塑性加工技术流程较长;(3)性能预测理论模型的普适性不够。因此,近七年来除更全面深入地研究拉拔、轧制及热处理等工艺外,对Cu-Ag合金原位纤维复合材料的探索主要聚焦于磁场下定向凝固、大塑性变形制备工艺、更低的Ag含量及添加其他合金元素对其性能的影响,以及引入先进分析表征技术。研究发现磁场下定向凝固可改变晶体的生长方式,通过对枝晶大小和间距、共晶组织体积分数等进行控制来影响材料的性能,使强度进一步提高。等通道转角挤压(Equal channel angular pressing,ECAP)及高压扭转(High-pressure torsion,HPT)等大塑性变形技术在Cu-Ag合金�A magnet coil can produce strong magnetic field, under which the research of condensed matter physics, materials science, chemistry and bioscience can be carried out. High magnetic field technology, especially pulsed high magnetic field technology, requires materials with high thermal conductivity, high conductivity and high strength to serve as coils, and Cu-Ag alloy in-situ filamentary composites emerged with a retrospection back to 1960s or 1970s. It is a nanocrystalline dual phase composite material which shows higher strength and thermal stability than single-phase material, and also has strong conductivity. After half a century of development, it has found wide application in frame materials, contact lines, and joints, etc. The Ag content of Cu-Ag alloy in situ filamentary composites has been decreased from 80wt% initially to 10wt%—30wt%, which fully controls the cost, and the compo- sites still maintain considerable electrical and mechanical properties. In the meantime, the effects of structure and morphology evolution during severe plastic deformation, phase interface, phase spacing and phase size on the composites’ performance have been stu- died in detail, and appropriate heat treatment technique has been established which could solve the problem of mutual exclusive between high conductivity and high strength. In order to further improve the comprehensive properties such as strength and plasticity, researchers also made attempts and achievements in adding third or even fourth microalloying elements such as Cr, Nb, Zr, Y, Gd and Ce to simultaneously substitute for Ag and produce more beneficial effects.However, there are still some shortcomings in the early research: Ⅰ. the lack of more in-depth research from a more microsco- pic view; Ⅱ. relatively complex and time-consuming procedure for the traditional multi-pass plastic processing; Ⅲ. not universally applicable theoretical model for performance prediction. Therefore, in the past seven years, apart from the comprehensive study of the drawi

关 键 词:CU-AG合金 强度 电导率 纤维增强 原位复合材料 

分 类 号:TG146.11[一般工业技术—材料科学与工程] TG166.2[金属学及工艺—金属材料]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象