改进的强跟踪求积分卡尔曼滤波算法  被引量:4

Improved Strong Tracking Quadrature Kalman Filtering Algorithm

在线阅读下载全文

作  者:贺姗[1] 赵旭[1] 师昕[1] HE Shan;ZHAO Xu;SHI Xi(School of Computer Science,Xi' an Polytechnic University,Xi' an 710048,China)

机构地区:[1]西安工程大学计算机科学学院,陕西西安710048

出  处:《计算机技术与发展》2018年第7期43-47,共5页Computer Technology and Development

基  金:陕西省教育科研计划项目(16JK1347);陕西省社会科学基金项目(2016R030);西安市碑林区科技计划项目(GX1708)

摘  要:在非线性系统状态估计问题中,强跟踪求积分卡尔曼滤波算法在实现过程中由于对判断滤波发散的阈值设置较小,即使在系统正常情况下也会以较大概率产生渐消因子,从而导致过度调节滤波增益,使得系统状态估计不够平滑。针对该问题,提出了一种改进的强跟踪求积分卡尔曼滤波算法。该算法通过适当增大判断滤波发散的阈值,从而有效地降低了误判滤波发散的概率,增强了滤波器对系统状态的跟踪性能,并能够根据不同维数的量测方程确定弱化因子的取值,从而有效避免了凭经验选取弱化因子,具有较强的操作性。对两种算法进行实验仿真,结果表明,改进的强跟踪求积分卡尔曼滤波算法具有更高的滤波精度,减小了系统状态估计值与真实值之间的偏差。In the nonlinear state estimation,strong tracking quadrature Kalman filtering algorithm sets small threshold to judge filtering divergence leading to fading factor with high probability even when the system is normal,which causes excessive regulation of the filtering gain and makes the state estimation curve lack smoothness.For this,we present an improved strong tracking quadrature Kalman filtering algorithm.The algorithm reduces probability of misjudging filter divergence by appropriately increasing the threshold,and also can enhance the tracking performance of the filter.Thereby,it can determine the softening factor by the different dimensions of measurement equation,and thus avoids the disadvantages of the previous algorithm that determines the softening factor in accordance with experiences.It is more operable and the simulation test is carried,which shows that the improved strong tracking quadrature Kalman filtering algorithm can obtain higher filtering accuracy than the strong tracking quadrature Kalman filtering algorithm,and reduces the deviation between the system state estimation value and the real value.

关 键 词:非线性系统状态估计 强跟踪求积分卡尔曼滤波 渐消因子 弱化因子 

分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象