检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:徐玉春[1] 王锦玲 XU Yu-chun;WANG Jin-ling(Zhengzhou Railway Vocational and Technical College,Zhengzhou Henan 451460,China;College of Mathematics & Statistics,Zhengzhou University,Zhengzhou Henan 450001,China)
机构地区:[1]郑州铁路职业技术学院,河南郑州451460 [2]郑州大学数学与统计学院,河南郑州450001
出 处:《通信技术》2018年第8期1936-1939,共4页Communications Technology
摘 要:在GF(3)上构造了两类广义自缩序列的新模型,证明了此类广义自缩序列的最小周期2×3^(n-1),0-游程、1-游程、2-游程分布均衡,且游程分布个数均稳定在72×3^(n-6)附近。研究表明,此类新序列不仅能够获得最小周期的最大值2×3^(n-1),而且保持了GF(2)上第四类广义自缩序列良好的伪随机性,并与GF(3)上其他广义自缩序列相比具有更好的密码学特性。A new model of two generalized self-shrinking sequences is constructed on GF (3). It is proved that the minimum period of such generalized self-shrinking sequences is 2×3 n-1, and 0-pattern, 1- pattern, 2-pattern are balanced, and the number of run-length distributions is stable in the range of 72×3 n-6. The research reveals that this novel sequence could acquire the maximum value 2×3 n-1 of the minimum period while maintaining the good pseudo-randomness of the fourth generalized self-shrinking sequence on GF(2), and has better cryptographic properties than other generalized self-shrinking sequences on GF (3).
分 类 号:TN918.1[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.116.239.148