检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李路[1,2] 黄汉英 赵思明[3] 杨素仙 LI Lu;HUANG Han-ying;ZHAO Si-ming;YANG Su-xian(College of Engineering,Huazhong Agricultural University,Wuhan 430070,Chin;Key Laboratory of Agricultural Equipment in Mid-lower Yangtze River,Ministry of Agriculture,Wuhan 430070,China;College of Food Science & Technology,Huazhong Agricultural University,Wuhan 430070,China)
机构地区:[1]华中农业大学工学院,湖北武汉430070 [2]农业部长江中下游农业装备重点实验室,湖北武汉430070 [3]华中农业大学食品科技学院,湖北武汉430070
出 处:《食品与发酵工业》2018年第6期257-262,共6页Food and Fermentation Industries
基 金:中央高校基本科研业务费专项(2662015PY079);湖北省重大科技创新计划(2014ABC009)
摘 要:针对稻谷谷壳率和整精米率的预测问题,以46个品种的稻谷样本为研究对象,采集近红外漫反射光谱信息,使用2阶小波消噪和Z-score归一化对光谱数据进行预处理,利用Kennard-Stone法划分样本集。通过竞争自适应重加权采样法筛选出与谷壳率和整精米率相关的特征波长,并根据多元线性回归理论建立了稻谷谷壳率和整精米率的预测模型,结果表明,稻谷谷壳率的近红外特征波长为21个,整精米率的特征波长为28个;两模型的决定系数分别为0.998 3和0.998 7,定标标准差分别为0.112 9和0.982 1,相对偏差分别为0.51%和2.34%。In order to predict husk content and rice production yield,46 species of paddy were studied. After the near infrared diffuse reflectance spectroscopy,samples were preprocessed by wavelet denoising and Z-score normalizing. Kennard-Stone method was used to select the sample set. The competitive adaptive reweighted sampling was applied to screening the key wavelengths associated with the husk content and rice production yield from paddy. Finally,the prediction models of the husk content and rice yield were established with the multiple linear regression. The results indicated that 21 near infrared key wavelengths were associated with the husk content,and 28 key wavelengths were associated with rice yield. The R2 of two prediction models were 0. 998 3 and 0. 998 7. The root mean square error of calibrations were 0. 112 9 and 0. 982 1,and the relative deviation were 0. 51% and 2. 34%,respectively.
关 键 词:近红外光谱 稻谷 谷壳率 整精米率 竞争性自适应重加权采样 回归分析
分 类 号:O211.67[理学—概率论与数理统计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145