检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:胡建陶 张云春[1] 姚绍文[1] 王世普[1] HU Jiantao;ZHANG Yunchun;YAO Shaowen;WANG Shipu(School of Software,Yunnan University,Kunming Yunnan 650095,China)
机构地区:[1]云南大学软件学院,昆明650095
出 处:《计算机应用》2018年第A01期120-123,共4页journal of Computer Applications
基 金:国家自然科学基金资助项目(61363021);云南省应用基础研究计划青年项目(2012FD004);云南大学软件学院教育创新基金资助项目(2012EI07)
摘 要:相对于单径路由,多径路由算法能有效提升无线网络性能。然而,现有多径路由算法存在求解复杂度过高、路径质量差异较大等缺陷。为解决上述问题,并充分满足现有新型应用对无线网络高性能路由的需要,提出基于粒子群优化的多径发现(PSO_MPD)算法,定义了拥塞预测度和节点转发优良度函数作为PSO模型的适应度函数,以保证计算所得路径的有效性和高效性。实验结果表明:与AODV和AOMDV路由算法相比,PSO_MPD算法能发现质量较优的多条路径,具有收敛快、开销小等优势。Compared with the single-path routing, multi-path routing algorithms are effective in promoting the performance of wireless networks. However, the existing multi-path routing algorithms are proved faulty due to their high complexity and large variance of quality among multiple disjoint paths. To solve the above mentioned problems and fulfill the demands of high performance network routing in novel applications, a Particle Swarm Optimization-based Multi-Path Discovery (PSO_MPD) algorithm was proposed. This paper also defined a fitness function for PSO model based on the definition of two functions, the congestion prediction degree function and the node forwarding function. This fitness function guaranteed the validity and effectiveness of the paths computed. The experimental result shows that PSO_MPD algorithm outperforms Ad hoc On-demand Distance Vector (AODV) and Ad hoc On-demand Multipath Distance Vector (AOMDV) routing algorithms in finding multiple paths with higher quality, and has the advantages of fast convergence and low complexity.
关 键 词:多径路由 粒子群优化 无线MESH网络 拥塞控制 适应度函数
分 类 号:TP393[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.127