An Orbit Determination Using SGP4 Propagator and Doppler Shifts for CubeSats  被引量:2

An Orbit Determination Using SGP4 Propagator and Doppler Shifts for CubeSats

在线阅读下载全文

作  者:Wesam M.Elmahy Zhang Xiang Lu Zhengliang Liao Wenhe 

机构地区:[1]School of mechanical engineering, Nanjing university of science and technology, Nanjing 210094 P. R. China

出  处:《Transactions of Nanjing University of Aeronautics and Astronautics》2018年第3期472-482,共11页南京航空航天大学学报(英文版)

基  金:supported by the Research Fund for the Doctoral Program of Higher Education of China (No.20113219110025)

摘  要:The two line elements(TLEs),released by the North American Aerospace Defense Command(NORAD),are chosen for CubeSats' mission operators.Unfortunately,they have errors and other accompanied problems,which cause large deviations in the in-track component.When a TLE value is available at a certain epoch,the dominant error is the angular error.It is proposed to correct the angular error by solving-for the mean argument of latitude at the desired epoch.A batch least squares technique and range rate measurements are used for the correction process.With the assistance of satellite tool kit(STK)software and Matlab,a simulation to verify the orbit determination(OD)technique is implemented.This paper provides an angular correction low cost OD method and presents a complete analysis for various test cases.This approach maintains high accuracy in cross-track and radial and makes great improvement in in-track at the same time,but it is exclusive for circular orbits.When it is applied to an elliptical orbit,the error will be unacceptable.Therefore,the angular error is corrected using the longitude of periapsis which totally mitigates the error at the epoch under consideration.For inclinations less than 20 o,the mean longitude is preferred for the angular correction as it provides more accuracy compared with the mean argument of latitude.The two line elements(TLEs),released by the North American Aerospace Defense Command(NORAD),are chosen for CubeSats' mission operators.Unfortunately,they have errors and other accompanied problems,which cause large deviations in the in-track component.When a TLE value is available at a certain epoch,the dominant error is the angular error.It is proposed to correct the angular error by solving-for the mean argument of latitude at the desired epoch.A batch least squares technique and range rate measurements are used for the correction process.With the assistance of satellite tool kit(STK)software and Matlab,a simulation to verify the orbit determination(OD)technique is implemented.This paper provides an angular correction low cost OD method and presents a complete analysis for various test cases.This approach maintains high accuracy in cross-track and radial and makes great improvement in in-track at the same time,but it is exclusive for circular orbits.When it is applied to an elliptical orbit,the error will be unacceptable.Therefore,the angular error is corrected using the longitude of periapsis which totally mitigates the error at the epoch under consideration.For inclinations less than 20 o,the mean longitude is preferred for the angular correction as it provides more accuracy compared with the mean argument of latitude.

关 键 词:CUBESAT low earth orbit(LEO) orbit determination doppler shift two line elements(TLEs) 

分 类 号:V412.4[航空宇航科学与技术—航空宇航推进理论与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象