检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张娜 唐忠 Zhang Na;Tang Zhong(School of Electrical Engineering,Shanghai University of Electric Power,Shanghai 200082,Chin)
出 处:《电测与仪表》2018年第12期54-59,87,共7页Electrical Measurement & Instrumentation
基 金:国家自然科学基金资助项目(51607111);中国工程院2016年国家战略咨询项目(2016-XZ-29-02)
摘 要:通过建立电动汽车及风电参与的负荷平抑、负荷峰谷差和电动汽车充放电费用的多目标模型,考虑电动汽车电池的可用容量和充放电功率等约束条件的情况,采用基本遗传算法和非线性规划遗传算法这两种不同算法,分析考虑负荷峰谷差对平抑负荷波动和提高电动汽车用户收益产生的影响,并分别对所产生结果进行对比。最后,通过算例分析验证结果表明,通过在分时电价合理的安排电动汽车充放电下采用非线性规划遗传算法并考虑负荷峰谷差可使多目标模型更加优化,并给出非线性遗传算法求解多目标模型时的结果曲线图。The multi-objective model of the electric vehicle and wind power in the load control is established,which stabilizes the peak and valley difference of load and electric vehicle charging and discharging cost. Considering the electric vehicle battery available capacity and charge discharge power constraints,as well as the basic genetic algorithm and genetic algorithm for nonlinear programming of the two different algorithms,this paper analyzes the influence of peak load difference on stabilizing the load fluctuation and improving the return of electric vehicle users,and the generated results are compared respectively. Finally,through the example analysis results show that the multiobjective model can be more optimized through the reasonable price in the electric vehicle charging and discharging and genetic algorithm for nonlinear programming and considering the peak and valley load difference,and the results curve of a genetic algorithm for solving multi-objective nonlinear model is presented.
关 键 词:电动汽车 风电并网 协同调度 多目标优化 非线性遗传算法
分 类 号:TM93[电气工程—电力电子与电力传动]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28