第一类典型域上Laplace-Beltrami算子谱的下界估计  

Infimum of the spectrum of Laplace-Beltrami operator on classical bounded symmetric domains of the first type

在线阅读下载全文

作  者:龙素娟 LONG Su-juan1,2(1.Department of Mathematics,Minjiang University, Fuzhou 350108, China;2.School of Mathematics and Computing Science,Guilin University of Electronic Technology, Guilin 541004, China)

机构地区:[1]闽江学院数学系,福建福州350108 [2]桂林电子科技大学数学与计算科学学院,广西桂林541004

出  处:《吉林师范大学学报(自然科学版)》2018年第3期64-67,共4页Journal of Jilin Normal University:Natural Science Edition

基  金:国家自然科学基金地区项目(11662001);广西省自然科学基金青年基金项目(2015jjBA10049);福建省中青年基金项目(JAT170467);广西省自然科学重点基金项目(2016GXNSFDA380031)

摘  要:Riemannian流形和Khler流形上Laplace-Beltrami算子谱的下界的估计是微分几何研究领域的热点问题.针对LiS和Tran M A得到的关于Laplace-Beltrami算子谱的下界的估计,利用华罗庚先生和陆启铿先生关于有界对称典型域的研究结论,得出了第一类有界对称典型域上Laplace-Beltrami算子谱的下界估计.Estimation on the spectrum of Laplace-Beltrami operator on Riemannian and Khler manifolds was studied by many authors. Considering the results of Li and Tran,problem on estimating the bottom of the spectrum of the Laplace-Beltrami operator was studied with Bergman metric on the classical bounded symmetric domains. Here,the paper obtained the explicit range for the bottom of spectrum of Laplace-Beltrami operator on the first type classical bounded symmetric domains with the known results on the Bergman kernel function given in Hua and Lu.

关 键 词:Laplace-Beltrami算子 典型域 Kahler度量 

分 类 号:O174.56[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象