检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:宣章健 蔡晓霞 褚鼎立 XUAN Zhang-jian;CAI Xiao-xia;CHU Ding-li(Institute of Electronic Warfare,National Defense Technology University,Hefei Anhui 230037,China)
机构地区:[1]国防科技大学电子对抗学院,安徽合肥230037
出 处:《通信技术》2018年第6期1302-1306,共5页Communications Technology
摘 要:端点检测是指从一段包含语音的信号中检测出语音的起始点,是语音处理中的重要部分。常用的语音端点检测方法有短时能量和信息熵端点检测方法。但是,短时能量法抗噪声性能较差,而信息熵算法检测精度与稳定性波动较大,端点处的检测曲线较平缓。针对以上问题,结合两种方法,提出了一种基于改进信息熵的端点检测算法,即信能比算法。实验结果表明,该算法较短时能量和信息熵算法,具有更好的检测性能和检测精度,且抗噪声性能更好。Endpoint detection, as an important part of speech processing, detects the starting point of speech from a signal containing speech. The commonly-used speech endpoint detection method involves short-time energy and information entropy endpoint detection method. However, the short-time energy method is poor in noise resistance, while the information entropy algorithm fairly fluctuated in detection accuracy and stability, and the detection curve at the endpoint relatively smooth. In combination with these two methods, a new endpoint detection algorithm based on modified information entropy(SNR) is proposed, and the experimental results indicate that as compared with short-time energy and information entropy algorithm, this proposed algorithm has better detection performance and detection precision, and also better anti-noise performance.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249