检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李怡轩[1] LI Yi-xuan(Weinan Normal University,Weinan 714000)
机构地区:[1]渭南师范学院,渭南714000
出 处:《微型电脑应用》2018年第8期78-81,共4页Microcomputer Applications
摘 要:针对传统的手写数字识别准确率低的缺点,将机器学习方法引入手写数字识别。提取数字图像的水平交点、垂直交点和对角交点作为手写数字图像的特征向量,建立手写数字模板矩阵,通过计算待识别图像和模板矩阵的欧式距离和后验概率,从而实现手写数字识别。研究结果表明,机器学习方法手写数字识别的精度可以高达97.63%,为手写数字识别提供新的方法和途径。In view of the low accuracy of traditional handwritten numeral recognition, the machine learning method is intro- duced. The horizontal intersection, vertical intersection and diagonal intersection of digital images are extracted as feature vec- tors of handwritten numeral images, and a handwritten numeral template matrix is established. The handwritten numeral rec- ognition is realized by calculating the continental distance and post-test probability of the images and the template matrix. The results show that the precision of handwritten digital recognition can be as high as 97.63%, which provides a new way for handwritten digital recognition.
分 类 号:TP311[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15