机构地区:[1]College of Fisheries, Ocean University of China [2]Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology [3]School of Marine Sciences, University of Maine
出 处:《Acta Oceanologica Sinica》2018年第8期21-30,共10页海洋学报(英文版)
基 金:The Fundamental Research Funds for the Central Universities under contract Nos 201562030 and 201612004
摘 要:Natural mortality rate(M) is one of the essential parameters in fishery stock assessment, however, the estimation of M is commonly rough and the changes of M due to natural and anthropogenic impacts have long been ignored.The simplification of M estimation and the influence of M variations on the assessment and management of fisheries stocks have been less well understood. This study evaluated the impacts of the changes in natural mortality of Spanish mackerel(Scomberomorus niphonius) on their management strategies with data-limited methods. We tested the performances of a variety of management procedures(MPs) with the variations of M in mackerel stock using diverse estimation methods. The results of management strategies evaluation showed that four management procedures DCAC, SPMSY, cur E75 and minlen Lopt1 were more robust to the changes of M than others; however, their performance were substantially influenced by the significant decrease of M from the 1970s to 2017. Relative population biomass(measure as the probability of B〉0.5 BMSY) increased significantly with the decrease of M, whereas the possibility of overfishing showed remarkable variations across MPs. The decrease of M had minor effects on the long-term yield of cur E75 and minlen Lopt1, and reduced the fluctuation of yield(measure as the probability of AAVY〈15%) for DCAC, SPMSY. In general, the different methods for M estimation showed minor effects on the performance of MPs, whereas the temporal changes of M showed substantial influences. Considering the fishery status of Spanish mackerel in China, we recommended that cur E75 has the best trade-off between fishery resources exploitation and conservation, and we also proposed the potentials and issues in their implementations.Natural mortality rate(M) is one of the essential parameters in fishery stock assessment, however, the estimation of M is commonly rough and the changes of M due to natural and anthropogenic impacts have long been ignored.The simplification of M estimation and the influence of M variations on the assessment and management of fisheries stocks have been less well understood. This study evaluated the impacts of the changes in natural mortality of Spanish mackerel(Scomberomorus niphonius) on their management strategies with data-limited methods. We tested the performances of a variety of management procedures(MPs) with the variations of M in mackerel stock using diverse estimation methods. The results of management strategies evaluation showed that four management procedures DCAC, SPMSY, cur E75 and minlen Lopt1 were more robust to the changes of M than others; however, their performance were substantially influenced by the significant decrease of M from the 1970s to 2017. Relative population biomass(measure as the probability of B〉0.5 BMSY) increased significantly with the decrease of M, whereas the possibility of overfishing showed remarkable variations across MPs. The decrease of M had minor effects on the long-term yield of cur E75 and minlen Lopt1, and reduced the fluctuation of yield(measure as the probability of AAVY〈15%) for DCAC, SPMSY. In general, the different methods for M estimation showed minor effects on the performance of MPs, whereas the temporal changes of M showed substantial influences. Considering the fishery status of Spanish mackerel in China, we recommended that cur E75 has the best trade-off between fishery resources exploitation and conservation, and we also proposed the potentials and issues in their implementations.
关 键 词:fishery management UNCERTAINTY management strategy evaluation(MSE) data limited method DLMtool
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...